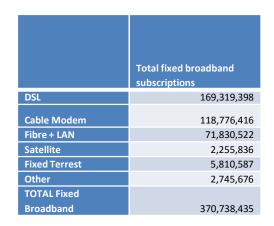
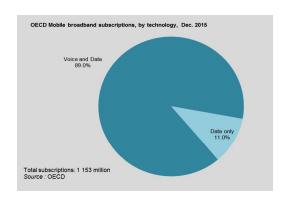
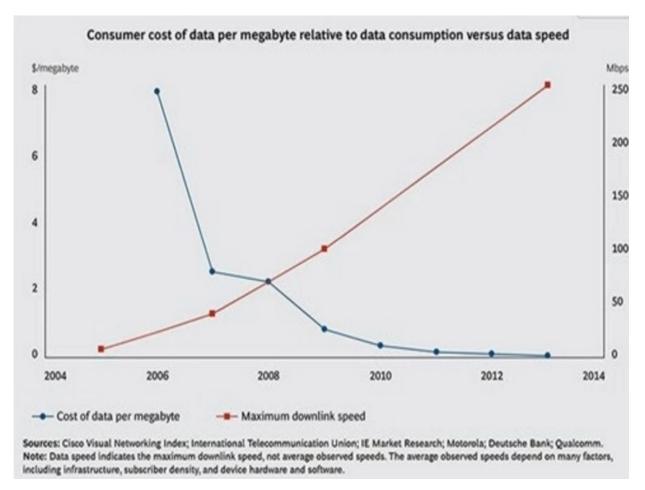

Brainstorming Broadband


Wireless/Wireline – Financial Viability

TRAI Seminar - New Delhi Jan 18, 2017


OECD Fixed vs Wireless

OECD Fixed Broadband – 2015



OECD Mobile Broadband – 2015

	Total mobile broadband subscriptions	
Voice and Data	1,026,290,134	
Data only	126,531,641	
TOTAL Mobile Broadband	1,152,821,775	

Mobile Innovation Lowers Costs and Improves Performance

Source: Jumping from fixed Internet to mobile: India is going wireless Joshua Bleiberg and Darrell M. West, March 18, 2015:

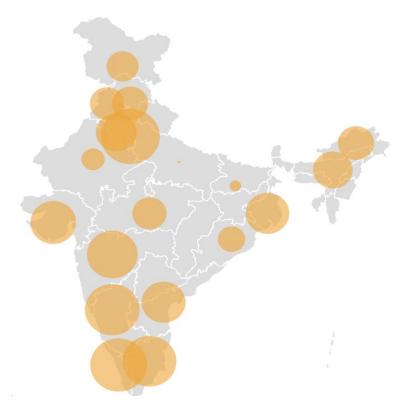
https://www.brookings.edu/blog/techtank/2015/03/18/jumping-from-fixed-internet-to-mobile-india-is-going-wireless/

Fibre & Wireless Costs

Fibre is indeed most effective for general purpose networks

...provided:

- a) There's commercial/financial potential that will sustain the investment;
- b) It is feasible to install at reasonable cost;


...excepting:

- c) Specialised applications, such as high-speed trading... (NYSE Chicago).
- d) Dispersed users who are not in clusters.

The Gaps – to be bridged

• 'The India wide web' [on *The Hindu*'s web site, by Srinivasan Ramani] showing broadband penetration interactively demonstrates the nature of connectivity needs away from the urban centres and network paths.

Broadband Penetration

The Connectivity Needs

At urban centres and along the connecting networks, the cost for laying fibre is reasonable up to a point, excluding ROW, etc.*

- Away from the clusters and backbones, where about 70% of the people reside, it costs more per user because of the dispersed population, while there may be insufficient remunerative potential.
- Hence the need to augment fibre capacity with less expensive access technologies.
- *In dense urban areas, it is difficult if not impracticable to lay fibre. Such areas also require wireless access.

High-Speed Wireless Examples

- Electronic Trading: 60-70-percent of NYSE's daily volume.
 Large trading companies use dedicated microwave links.
- "A one (1) millisecond advantage in trading applications can be worth \$100 million a year..." Information Week.
- http://www.stephouse.net/2015/07/compare-fiber-vs-wireless-services/
- 'Information Transmission Between Financial Markets in Chicago and New York Gregory Laughlin, Anthony Aguirre, and Joseph Grundfest: https://arxiv.org/pdf/1302.5966.pdf

A number of wireless technologies have been discussed in India for years. The TRAI has even recommended policies for some of them – (examples - next page)...

High-Speed Wireless - contd

- 60 GHz (V band) for high-speed short haul (wireless gigabit ~350 m). [Rain attenuation]
- 70/80 GHz (E band) for longer distances (~5 km). Both can be set up in dense urban environments in place of fibre at much lower cost. [Rain attenuation]
- TV White Space for the middle mile between fibre or microwave POP (e.g., at Gram Panchayat) to user clusters 2-7 km away over uneven ground, farther in the plains. Point-to-Point Repeaters can bridge longer distances from the fibre POP. [No rain attenuation]

WiFi 802.11 ac

802.11 ac – WiFi - 5.8GHz Self-imposed restriction on capacity:

Theoretically, 8x160MHz channels could be made available.

With 256-QAM, 866 Mbps x 8 = 6,933Mbps;

India permits only 50MHz. Need: 80MHz /channel x 2 (or more – to 8 - channels?).

Cost Comparisons

Wireless/Wireline

Busy hour offered load (BHOL): 444 kbps assumed – 4 Mbps service.
 Bursts: 10 Mbps; spectrum & ROW charges excluded.

Wireless Broadband Not a Viable Substitute for Wireline Broadband

	2x5 MHz Total Tower Sites: 29	2x10 MHz Total Tower Sites: 15	2x15 MHz Total Tower Sites: 10	1x20 MHz Total Tower Sites: 9
Radio Network Equipment	\$4,181,000	\$2,512,000	\$1,918,000	\$1,949,000
Core Network Equipment	\$592,000	\$342,000	\$249,000	\$229,000
Fiber Backhaul	\$2,980,000	\$2,636,000	\$2,631,000	\$2,423,000
Total Investment	\$7,753,000	\$5,490,000	\$4,798,000	\$4,601,000
Capacity Cost	\$470	\$330	\$290	\$280

Table 5-1: Example Wireless Initial Investment Costs (BHOL=444 kbps)

	Cost
Outside Plant	\$6,900,000
Electronics	\$1,560,000
Total Investment	\$8,460,000
Capacity Cost	\$ 5

Table 5-3: Example FTTP Initial Investment Cost

Conclusion:

Both wireless and wireline broadband services play important roles... [and users need both] –

http://www.bbcmag.com/2015mags/May June/BBC May15 ComparingWiredandWireless.pdf www.vantagepnt.com CIS - Shyam Ponappa

Cost Comparisons – contd

Wireless/Wireline

Findings - [the assumptions drive these outcomes] Excluding spectrum costs:

A network with 2x20 MHz costs about half of one with 2x5 MHz

2x5 MHz: 41% > 2x10 MHz

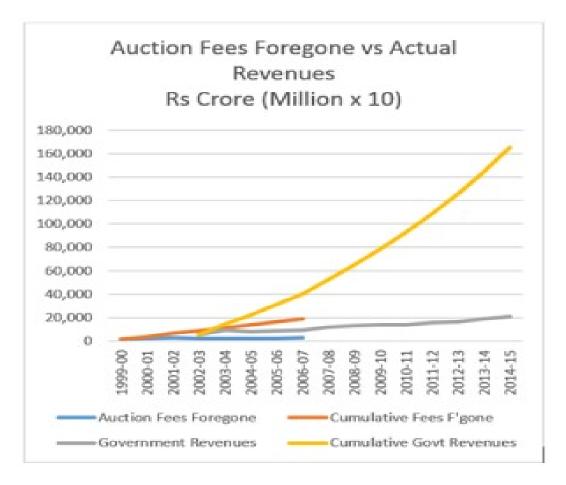
• : 62% > 2x15 MHz

• : 69% > 2x20 MHz

- A fibre network costs <10% more than a 2x5 MHz wireless network.
- A 2x20 MHz wireless network costs a little over half (54%) of a fibre network.

We Need a Different Approach

 Because the present approach is unlikely to give broadband connectivity to most households countrywide in a reasonable time (several years).
 [BBNL: 15,614 Gram Panchayats mid-January 2017 out of 250,000 - ~6%]


- Need to work out participatively between:
 - Government
 - Industry (operators and equipment providers)
 - Users/citizens
 - Keeping judiciary informed, in the loop

What form of solutions will deliver better results?

Move Away From Deadlock

- Move away from the deadlock of adversarial lowest equilibrium (Nash equilibrium).
- Start with recognising and accepting the facts.
- Consider the evidence before dismissing other points of view.

Government Collections from Telecom

http://organizing-india.blogspot.in/2016/04/breakthroughs-needed-for-digital-india.html

Revenue sharing post setup exceeds up-front charges, and is how, for instance, toll roads are built.

Phased, Systematic Approach to Design, Implementation

- Use the same approach for building/accessing other infrastructure, such as roads and airports, for digital networks.
- Rationalise policies on spectrum resource use, and in organising the sector through participative pathfinding and problem solving.
- Build national champions in manufacturing to keep costs affordable.
 [e.g., TV White Space, where India could set the standard with its IPR and products, for extending fibre to villages/clusters of rural users.

Rural Point-to-Multipoint links, where OFC may be infeasible/unviable: Block HQs to multiple Gram Panchayats, and GPs to villages around. 3x - 4x cell tower range, solar power.]

End-to-End Systems

- Adopt end-to-end design & implementation approach.
 - Objectives & Policies.
 - Coherent, phased objectives in the public interest.
 - Based on fair competition, protecting public interest but working with stakeholders not as adversaries.
 - Legislation Formulate primary laws driven by policies, objectives.
 - Secondary laws...
 - Rules, regulations, procedures.
 - Agencies and mechanisms for effective implementation.
 - Implementation.

Begin With Some Easy Steps – Unfettering Some Wireless Bands With Some Difficult Steps – Policies Facilitating Fibre Deployment

- Begin by dismantling restrictive norms in uncontested areas, e.g.,
 - 60 GHz unlicensed access as in many countries.
 - 70/80 GHz light licensing.
 - Microwave radio charges reduced to nominal (collections as taxes) but with stringent renewable power standards.
 - 802.11 ac: increase spectrum available to 80 MHz, 160 MHz or more.
- While unscrambling disincentives for fibre and cable through a participative work outs with all stakeholders:
 - Rationalise, align and reduce the burden of ROW, so that more towers are on fibre over time.
 - Set policies to access the Internet through cable TV.

Do Facilitated, Participative Brainstorming

- Brainstorm on radical solutions:
- Shared networks to maximise productivity,
 build out connectivity?
- Private consortiums with Government anchored entities?
 - With common access to shared network + pooled spectrum?
 - Secondary access to unused Government agencies' spectrum?
 - Payment for access to Privately owned spectrum?
 - Government owned spectrum?

Conclusion

- Government lead on working out solutions through participative processes, creating policies that enable more deployment and delivery.
- Align and rationalise charges so that they are not onerous.
- Use revenue-sharing principle + tax structure for Government revenues
 after networks are built.
- Explore shared infrastructure and spectrum fully, through separate consortiums with Government participation to secure public interest, with private sector management (Singapore OpenNet model).