Response to TRAI Consultation Paper dated 29th August 2023

Review of terms and conditions of PMRTS \& CMRTS Licenses

Response submitted by: Arya Omnitalk Radio Trunking Services Pvt Ltd Pune

Q1. Whether there is a need to review the terms and conditions of PMRTS License and PMRTS Authorization under Unified License? Kindly provide adetailed response with justifications.

A1. There is need to review the terms and conditions of the PMRTS License and PMRTS under Unified License because DoT has not taken action on any of the TRAI recommendations relating to PMRTS which TRAI made on 20th July 2018 after extensive consu/tation with all concerned stakeholders.

Meanwhile the PMRTS industry has been starved for spectrum and unlike Captive/CMRTS applicants, has also been refused any provisional /interim allocation of spectrum, even when the PMRTS Industry was willing to accept furnishing the same undertaking being given by Captive /CMRTS.

Also most fixed-line Service Providers have switched to providing SIP Trunks by and large, instead of the traditional E1/PRI trunks because of which PSTN connectivity part may require review.

Q2. In case it is decided to review the terms and conditions of PMRTS Licenseand PMRTS Authorization under Unified License, in what manner should the following conditions be amended?
(a) Scope of the license
(b) Roll out obligation
(c) Technical conditions
(d) Network interconnection
(e) Security conditions
(f) Any other (please specify).

A2. Since these recommendations are more than 5 years old and fixed-line Service Providers have migrated from E1/PRI to SIP trunks, we shall require a $\mathbf{3 0}$ channel SIP trunk for a Digital System for every 2,700 subscribers.

We are suggesting that the PSTN connectivity criteria be changed from 10,000 to 2,700 subscribers both for initial allocation of a 30 channel SIP /E1/PRI trunks or additional 30 Channel SIP/E1/PRI trunks for each additional 2,700 subscribers.

The reason we are recommending 2,700 subscribers is based on anticipated reduction in subscriber loading per channel from 180 per digital channel based on present loading norm (12.5 KHz) to 90 subscribers per digital channel ($\mathbf{1 2 . 5} \mathbf{K H z) ~ a f t e r ~ P S T N ~}$ connectivity is implemented. (Post PSTN connectivity conversations will be longer because of which loading per channel would come down drastically.

We do not recommend any change in the Service Area definition, Scope of PMRTS Service, Roll Out Obligations, Technical conditions or Security Conditions.

For PMRTS Service providers Site Interconnectivity is far more important than PSTN Connectivity.

Q3. Whether PMRTS providers should be permitted Internet connectivity withstatic IP addresses? Kindly provide a detailed response with justification.

A3. Interconnection of sites within the same Service Area should be permitted for the following reasons: -

- In a Metro Service Area (e.g. NCR) all the base station sites should be allowed to be interconnected to offer seamless coverage, given that most customers have their offices in the main city(Delhi) and factories/warehouses in the suburbs (Noida/Gurugram), requiring seamless coverage between main city and suburbs.
- Even in a Service Area which spans a Telecom Circle , the same extended

Arya Omnitalk Radio Trunking Services Private Limited
coverage requirement exists for a main city and its suburbs e.g., Chennai and its suburbs of Sriperumbudur, Chengalpattu, Mahabalipuram and Kanchipuram etc.

In view of the above PMRTS providers require Internet Connectivity with static IP for: -

- Site to site networking
- Trunking system backhaul connectivity to Central Server
- For inter-suburb and intra-service area roaming voice calls.

Q4. Whether there is a need to review the extant provisions relating to service area for PMRTS Authorization under Unified License? If yes, whether it would be appropriate to grant PMRTS Authorization for three different categories with service area as (a) National Area; (b) Telecom circle/ Metro Area; and (c) Secondary Switching Area (SSA)? Kindly provide a detailed response with justification.

A4. There is need to review the extant provisions relating to authorization of PMRTS Service area under unified license for the following reasons:
a) Since subscriber loading criteria per channel is clearly defined, PMRTS operators need operational flexibility to relocate their sites in a given city to optimize RF coverage based on both site availability/cost scenarios from time to time as well as migration of customers from main city to suburbs.

Presently PMRTS operators have to seek approval of WPC for re-locating an existing site (completely or partially relocating, say 2 of the 5 allocated channels) or setting up a new site in the suburbs based on demand from both existing and new subscribers coming up in the suburbs.

Since 2014 DOT has not allocated any spectrum even on an interim basis (like
being given to CMRTS/Captive systems based on undertaking furnished by them), all permissions even for relocating a site had been held up citing reasons furnished under point 2.27 of the TRAI consultation paper)

Some PMRTS operators may like to simultaneously offer PMRTS in more than one city in a Telecom Circle (in case it is a State) based on demand from an anchor customer or an existing customer with operations extending to $\mathbf{2}$ cities or more. Just like in the case of an ISP, PMRTS operators may either like to start with just one city or more in the Telecom Circle/Metro Service Area. For this purpose, we recommend that the License/Authorization for PMRTS be granted for three different Categories namely Category 'A', Category 'B' and Category 'C'.

- The Service Area for Category 'A' authorization shall be the National Area.
- The Service Area for Category 'B' authorization shall be the Telecom Circle/Metro area.
- The Service Area for Category ' C ' authorization shall be the Secondary switching Area (SSA) / City.

We also recommend that the Royalty for spectrum, if assigned administratively, for the above three categories be fixed as follows:

1. Category C - The Royalty charge for spectrum fee finalized for SSA/City for each SSA. For better understanding the present royalty fee of Rs 48,000/-for 5 channels shall become the royalty charge for each SSA, after final recommendations of TRAI for Royalty payable.

Under Unified License, for more than four SSAs in a Telecom Circle, the Licensee shall be required to obtain PMRTS Category 'B' authorization for that Service Area.
2. Category B - The Royalty charge for spectrum fee for the Category B authorization shall be 4 times the Category C fee for one SSA. This suggestion is based on the cumulative experience of demand assessment for PMRTS for a Telecom Circle - if we look across all the PMRTS providers today the number of SSAs in each Telecom Circle (except Metro Service Area) is between 1-2 in the majority of Telecom Circles (the only exception being Gujarat which has PMRTS being provided in 5 SSAs). In Metro Service Areas the number of SSAs ranges from 3-4.
3. Category A - For prospective PMRTS operators wanting to start National Operations, Category A authorization shall be applicable. We suggest Royalty charge for spectrum fee for the Category A authorization to be 10 times the fee applicable for Category C authorization.

Q5. Whether there is a need to review the extant provisions relating to the authorized area for use of a particular frequency spectrum to PMRTS providers? If yes, in what manner should these provisions be amended? Kindly provide a detailed response with justification.

A5. There is definitely a need to review the extant provisions of relating to authorized use of spectrum to PMRTS providers, which presently is confined to assignment at a city specific level.

In order to prevent delay, PMRTS providers should be given the flexibility to reuse the spectrum issued for a Service Area in the same Service area based on intimating WPC and pay location-wise Royalty and Spectrum charges for the same.

This will result in the PMRTS Industry being able to respond in a timely manner to all new business opportunities emerging in the Service Area already licensed as well as

Arya Omnitalk Radio Trunking Services Private Limited
continue optimizing coverage through site relocation/optimization and serve both existing and new customers better.

Q6. Whether there is a need to review the mechanism of shifting the fixed station from one location to another location within the authorized area for use of a particular frequency spectrum? If yes, what should be the terms and conditions for such permission? Kindly provide a detailed response with justification.

A6. With the new proposed definition of Licensed Categories A \& B, the fee for extended coverage (as argued by DOT) is already paid by the PMRTS licensee, thus eliminating the need to seek any further approval from DOT.

In case of shifting the fixed station from one location to another within the SSA (Category C), DOT should not raise any objection as long as the shifting does not result in extending coverage beyond the point of reuse of the spectrum. (Our view is that any frequency which is location specific can't be reused up to $\mathbf{1 2 0} \mathbf{K m s}$ from the location where spectrum was being used earlier, given both the transmit power of $100 \mathbf{W}$ and an average transmit height above MSL of $200 \mathrm{~m}+$, with the exception of coastal area, for a typical PMRTS site).

Q7. Whether there is a need to permit PMRTS providers to shift a few frequency carriers out of a pool of frequency carriers, assigned to an existing Fixed Station, to a new Fixed Station located within the authorized area for use of the pool of frequency carriers? If yes, in what manner the challenges arising out of such partial shifting of frequency carriers may be mitigated? Kindly provide a detailed response with justification.

A7. Already explained as above in our answer to under Q6 above.

Arya Omnitalk Radio Trunking Services Private Limited Regd. Off.: Unit No-202, 2nd Floor, Summer Court, Magarpatta City, Pune - 411013, India Tel : 91-020-67470100 Fax: 91-020-67470199 CIN No. : U64120PN2003PTC018154

Q8. Whether there is a need to review the requirement of obtaining Wireless Operating License (WOL) by PMRTS providers? Kindly provide a detailed response with justification.

A8. The requirement to obtain renewal of WOL every year as mentioned in the frequency assignment, frequency allocation, or frequency earmarking letters already issued to PMRTS Providers under unified License for PMRTS authorization stand deleted. As it has been done in case of Access Service authorization vide DOT Circular No. L-14004/01/2012-NTG dated 02/11/2016. All PMRTS Operators are paying their Royalty Fee and WPC License FEE regularly every year in the m/o July and January on the basis of their nos of subscribers and nos of allocated frequency channels as on $30^{\text {th }}$ June and $31^{\text {st }}$ December. WPC may give notice if operators fail to pay WPCRoyalty and License fee on the due date.

Q9. Whether there is a need to review the provisions related to sale, lease andrent of the radio terminals of PMRTS? Kindly provide a detailed response with justification.

A9. On the issue of definition of AGR for PMRTS, it is requested that DoT, while including the sale proceeds of instruments in the definition of the "Adjusted Gross Revenue", should provide for the cost of the instruments to be reduced from the AGR i.e. including only the gross margin made on revenue from sale proceeds of instruments.

Lease and rental issue of radio terminals of PMRTS is now being permitted by DOT for those DPL holders who are supplying radios to customers availing services from PMRTS operator under the SARAL SANCHAR ONLINE Web portal.
"Rental" as an option is not available on Saral Sanchar Portal, therefore all rental radio terminals on portal at the beginning of the year are shown as radios received

[^0]back from the customer, again to be issued the same radio terminals back to I the same customers. Therefore, a separate rental option at Saral Sanchar portal needs to be provided.

We are also suggesting key changes in the DPL renewal format for which please refer Annexure 4.

Q10. In case your response to the $\mathbf{Q 9}$ is in the affirmative, what kind of changeswill be required in PMRTS licenses and Dealer Possession License (DPL) and guidelines? Kindly provide a detailed response with justification.

A10. This is now resolved under SARAL SANCHAR Scheme as explained above.

Q11. Whether there is a need to review the provisions related to import of the radio terminals of PMRTS? Kindly provide a detailed response with justification.

A11. DOT has instituted a procedure to seek an import license every time the PMRTS operator wishes to procure radios from overseas OEMs. (radios are not available in India) From DOT's point of view the purpose is twofold:

- To collect license fee for use of spectrum by the PMRTS operator @ Rs 100/- per radio.
- To monitor and ensure compliance with the Channel Loading norms defined by DOT, which have been stipulated by DOT @ 99 and 198 radios per channel for Analog \& Digital PMRTS respectively.
- To regulate and prevent unauthorized import of radios by a DPL holder we propose the following to mitigate challenges being faced by the PMRTS operators, while addressing concerns of DOT.
- For ensuring that the fee for usage of spectrum is paid, DOT should replace Arya Omnitalk Radio Trunking Services Private Limited
the present system of charging Rs 100/- per radio by a Spectrum Usage Charge (SUC) equal to 1% of AGR as also earlier recommended by TRAI. (TRAI recommendations for PMRTS dated 20 ${ }^{\text {th }}$ July 2018)
- While DOT can enforce the channel loading criteria already stipulated for the purpose of assigning spectrum, DOT should dispense with specifying any upper ceiling for import of radios (linked to channel loading criteria) for the following reasons:
- We have explained to DOT on no. of occasions that many customers who buy radios and avail PMRTS, later stop using the service, but neither return nor sell back the radios as they reflect in their books of accounts under current assets.
- DoT's present linkage of allowing radio import linked to channel loading is a big disincentive to target higher spectrum efficiency where possible. Moreover, higher the no. of radios imported by the PMRTS operator, higher would be the AGR and the 1\% SUC proposed shall result in additional revenue for the exchequer as well.
- In many cases, customers lose radios or radios are rendered beyond economic repairs or get subjected to attrition through wear and tear or declared unserviceable because of OEM declaring them as EOL
- In order to prevent unauthorized import of radios, DOT may allow only Licensed PMRTS operators for import of radios under OGL

Q12. Whether there is a need to review the provisions related to replacement of unserviceable network elements of PMRTS? Kindly provide a detailed response with justification.

A12. Since none of the network elements of PMRTS are available in India DoT should
Arya Omnitalk Radio Trunking Services Private Limited
process requests for replacing unserviceable network elements of PMRTS on an expeditious, automatic approval basis.

Q13. Whether there is need to review the recommendation No 4.5 (mentioned below) of the TRAI's Recommendations on 'Method of allocation of spectrum for Public Mobile Radio Trunking Service (PMRTS) including auction, as a transparent mechanism' dated 20.07.2018, which are underconsideration of DoT?
"4.5 The Authority recommends that-
(a) Carrier size for assignment to PMRTS licensee (both for analog or digital) shall be 6.25 KHz and multiples thereof.
(b) Carriers (frequency pairs) of $\mathbf{2 5} \mathbf{K H z}$ already assigned to the serviceproviders should be allowed to be retained by the service providers.
(c) Additional assignment of carriers for the existing analogue system shall continue @ carrier size of $\mathbf{2 5} \mathrm{KHz}$ (counted as $\mathbf{4}$ carriers of 6.25 KHzeach).
(d) Assignment in new cities/ service areas shall be made for digitalsystems only.
(e) Initially for each city, twelve carriers (frequency pairs) of carrier size 6.25 KHz in metro licensed service area and eight carriers (frequency pairs) in nonmetro license service area shall be assigned for PMRTS (Digital system) depending on the availability."

Kindly provide a detailed response with justification.

A13. PMRTS industry categorically endorses the above recommendations and urges TRAI and DOT to ensure their urgent and immediate implementation to help the industry to migrate from Analog to the long-awaited Digital Infrastructure.

Since analog infrastructure equipment has long been unavailable, we recommend that all new or additional assignment of carriers for the existing analogue system with a Carrier width of 25 KHz shall no longer be required. A 25 KHz Carrier being used by present analogue system can be counted as 4 carriers of 6.25 KHz each for the purpose of collecting royalty for spectrum usage from PMRTS operators.

Arya Omnitalk Radio Trunking Services Private Limited

Q14. Whether there is a need to mandate PMRTS providers to migrate to spectrally efficient digital technologies in a time-bound manner? If yes, what should be the time frame for mandatory migration to spectrally efficient digital technologies? Kindly provide a detailed response with justification.

A14. The 5-year delay in DOT accepting \& announcing the final recommendations for the PMRTS industry has adversely affected the PMRTS industry in many ways:

- The PMRTS industry has been deprived of spectrum since Aug'2014 affecting both subscriber growth in existing service areas and preventing the industry to venture into new service areas.
- Lack on new spectrum has resulted in the PMRTS industry not being able to migrate to Digital and has been forced to continue making investments in analog infrastructure and radios. As a result, the industry has built an analog radio population which is more than 70% of the total. Based on our assessment the average residual life of the radios is between 4-5 years before the end of which customer shall not accept making a new investment in the digital radio.
- The PMRTS operators also have an additional challenge of making new investments in Digital Infrastructure to migrate approx. 350-400 25KHz channels from Analog to Digital requiring a capex of Rs 70-80 Crs. Given the present state of the industry it will take at least 4-5 years to be able to afford making this investment.
- Besides, the long life span of radios will also result in a huge resistance from the end customers for being forced to replace their analog radios with Digital despite 3-5 years life still remaining for Analog radios.

Arya Omnitalk Radio Trunking Services Private Limited

ARYA OMNITALK
 WALKY TALKY I GPS TRACKING I TOLL \& HTMS

Q15. In case your response to Q14 is negative, what measures should be takento nudge and encourage PMRTS providers to migrate to spectrally efficientdigital technologies? Kindly provide a detailed response with justification.

A15. Immediate measure required by DOT is to put in place a frequency allocation plan for Digital PMRTS for 6.25 KHz 12.5 KHz and 25 KHz channel spacing with required threshold adjacent channel spacing (depending on Digital technology deployed) and urgent assignment of above spectrum to PMRTS operators even if it has to be on an interim/provisional basis, without waiting either for new TRAI recommendations (based on conclusion of this Consultation Paper) or the New Telecom Bill. As it is, DOT is assigning spectrum on a provisional/ Interim basis to CMRTS (Captive Mobile Radio Trunking Service) and Captive users based on an undertaking that the recipient company shall pay the final price of spectrum as determined by DOT.

We strongly urge TRAI to restore a level playing field for the PMRTS industry which for the last 9 years has been distorted unjustifiably in favor of PMRTS alternatives and substitutes i.e., CMRTS and Captive Radio users

Q16. Whether it is possible to deliver the PMRTS/ CMRTS, which are mission- critical in nature, using 4G/ 5G Network Slicing or any other technology? If yes, in what manner should the delivery of PMRTS/ CMRTS using 4G/ 5G network slicing be enabled in the license? What should be safeguardsto ensure that the quality-ofservice for cellular networks is not adverselyimpacted? Kindly provide a detailed response with justification.

A16. Ever since the launch of 5G providing various services through network slicing had been hotly debated topic. While delivery of PMRTS/ CMRTS using 5G is technically feasible it is not viable to consider going for the same for the following reasons:

Arya Omnitalk Radio Trunking Services Private Limited

- There are no PMRTS terminals either available today or in the roadmap of existing radio vendors which will be compatible with the 5G network. In our business standard 5G terminals will not work since the user requires ruggedized, terminals with enhanced audio to be heard even in high noise operating environment.
- Also the large legacy installation of PMRTS Infrastructure equipment and radio population will not be compatible with the new 5G terminals, whenever they are launched.
- If we consider the price of 5G spectrum paid by TSPs, and the millions of subscribers they count on for absorbing the amount paid in the spectrum auction, the PMRTS operator shall be both dependent on the TSP's rollout plan (which may be completely different from what is required by the PMRTS operator) as well as the likely minimum tariff imposed by TSP, given the price paid in spectrum auction, the opportunity cost of the network slice a TSP may have to reserve for a customer with just tens of thousands of subscribers and the low paying capacity of the PMRTS Operator given its revenue potential.
- The issue of interoperability with legacy infrastructure and terminals will be another challenge as also the customer having to migrate from legacy to 5G dedicated terminals for a considerable new investment.
- What may evolve for the PMRTS Industry in the next decade is a 4G/5G based Walky Talky which may through an IoT SIM use the 5G network for non-mission critical applications of some user segments (4G /5G PoC or also known as Broad band PTT over Cellular). However the legacy system is likely to run for at least another $\mathbf{1 0}$ years, if not more.

Q17. Whether there is a need to review the terms and conditions of PMRTS Authorization under Unified License (VNO)? Kindly provide a detailed response with justification.

Arya Omnitalk Radio Trunking Services Private Limited

A17. Since the DOT guidelines issued for VNOs in 2016 not a single VNO has come forward to offer PMRTS, to the extent we are recommending review of the terms and conditions of PMRTS authorization under UL, the same may be made applicable for VNO under UL regime.

Q18. In case it is decided to review the terms and conditions of PMRTS authorization under Unified License (VNO), in what manner should the following existing provisions be amended?

2.26.1 Service area

2.26.2 Scope of the license
2.26.3 Network interconnection
2.26.4 Any other (Please Specify). Kindly provide a detailed response with justification.

A18. As explained in our answers to Q1-Q17 above

Q19. Whether there is any other issue relevant for review of terms and conditions of the PMRTS License, PMRTS Authorization under Unified License, and PMRTS authorization under Unified License (VNO)? Kindlyprovide a detailed response with justifications.

A19. As explained in our answers to Qs 1-18 above.

Q20. Whether there is a need to review the terms and conditions of CMRTSlicense? Kindly provide a detailed response with justifications.

A20. There is a need to review the terms and conditions of a CMRTS license because of the following:
a) The authority should consider an application for CMRTS license only if the requirement is strictly captive to the applicant $e_{. g_{.,}}$for the sole and dedicated use of the applicant only. We have seen many cases of CMRTS license being issued to an applicant who is providing a Radio Trunking Service on a chargeable basis to different agencies not falling in the ownership of the applicant.
i. Some examples are Airports Authority of India taking up a CMRTS license and then charging all Airlines for usage of the same; a private operator (HCL Ltd., taking a Delhi wide CMRTS license and charging various user departments of the Delhi administration for usage of the same.
ii. There is no difference in either the use case or the end use of Radio Trunking Service between CMRTS and PMRTS in the examples provided above. Hence for the use cases described above only PMRTS license should be made available
b) It is well established that spectrum efficiency achieved by PMRTS operators is far higher than captive usage - typically channel loading achieved by PMRTS is $\mathbf{3}$ to $\mathbf{4}$ times that of a captive system. The spectrum efficiency for PMRTS is much higher because of increased no. of channels per site (leading to disproportionate increase in traffic handling capacity) as well as diverse usage-based customers (intensive usage at various points of time during the 24-hour day) and balanced distribution of simultaneous conversations (talk groups) for a given no. of radios per customer

In order to encourage efficient use of spectrum and given the limited spectrum available the authorities must discourage applicants for CMRTS in case their coverage requirements can be met by an existing PMRTS operator Please refer chart in Annexure 1 for improvement in loading per channel based on no of channels deployed per site.
i. Quite the opposite has in-fact happened since July-2014. While the PMRTS industry has been completely deprived of any new spectrum allocation, both Captive and CMRTS applicants have been assigned spectrum on a provisional basis after obtaining an undertaking from the applicant, thus distorting the level playing field between PMRTS and CMRTS / Captive
ii. Our view is that the License and Spectrum Fee for both CMRTS and Captive should be disproportionately higher than PMRTS for the above reasons. Also since the end use and purpose of both PMRTS and CMRTS is the same, assignment of spectrum, even on a provisional basis, should continue either for both PMRTS \& Captive/CMRTS or no one.
c) CMRTS/ Captive also need to necessarily have to deploy only Digital Technology, like with PMRTS as well as be governed by the same loading criteria as stipulated for PMRTS, in the interest of keeping a level playing field. However since Captive/CMRTS systems will never be able to achieve the same Spectrum efficiency, the Spectrum Fees \& Royalty for Captive /CMRTS should be disproportionately higher, especially since PMRTS is also paying a License Fee which is 8\% of AGR.

Q21. What should be the eligibility conditions for obtaining CMRTS license?Further, what should be the application processing fee for CMRTS license? Kindly provide a detailed response with justification.

A21. Unless the applicant requires a specific technology or customized RF coverage (tunnels, under ground stations etc., no Captive / CMRTS license should be issued if there is a PMRTS operator serving the geographical area in which the applicant is requesting for Captive/ CMRTS license. Also as discussed in the earlier section Captive/ CMRTS license should not be given unless the usage is strictly captive (Please ref. point 1 under answer to question no.20)

Arya Omnitalk Radio Trunking Services Private Limited

We have no comments on the application processing fee.

Q22. In case it is decided to review the terms and conditions of CMRTS license, in what manner should the following terms and conditions be amended?

A22. a) Service area:
Ans: Should be co-terminus with the desired coverage area for Captive/ CMRTS usage. Given that the requirement is for Captive use, no Telecom Circle Wide License should be given to Captive/CMRTS.
b) Period of validity:

Ans: As desired by applicant but not exceeding 20 years, beyond which applicant needs to apply for an extension
c) Scope of the license:

Ans: Strictly captive usage in an area where no PMRTS operator is providing service or there are special coverage requirements as mentioned in answer to question $\mathbf{2 0}$ above of TRAI Consultation paper.
d) Technical conditions;

Ans: Same as PMRTS and should not cause any interference to any other networks in the same coverage area
e) Channel assignment and loading:

Ans: Channel loading criteria shall be same as PMRTS. However, channel assignment should be made after satisfying PMRTS industry requirements for spectrum.

f) Operating conditions:

Ans: Like PMRTS, Captive/CMRTS applicant should require a License for import of radio terminals. Also only Digital Terminals should be allowed for import. The present conditions of Fixed terminals not exceeding 10\% of total should continue.

g) Conditions relating to suspension, revocation or terminationof license:

Ans: Same as PMRTS but may be appropriately modified in the context of Captive/ CMRTS usage. Additionally, any violation evidenced w.r.t either Captive Usage or commercial exploitation by way of charging any users should lead to suspension and revocation of license

h) Any other (please specify):

Ans: Roll out obligation should be the same as PMRTS and after imposing a penalty as applicable for delayed roll out, the license should be revoked if roll out is still not implemented

In the recent past DoT vide gazette notification dated $18{ }^{\text {th }}$ October 2018 opened up a License Free band from 446.0 MHz to 446.2 MHz for Personal Mobile Radios.

These mobile radios were to conform to a maximum transmit power (effective radiated power) not exceeding 500 milliwatts. An additional condition imposed was that these personal mobile radios were not to be used with any base station or repeater. However there is a rampant misuse of this provision, hurting both the Captive usage as well as PMRTS.

Annexure 3 provides information of how these Personal Mobile Radios are being sold with an effective radiated power of even 5 Watts and how some Companies are even selling base stations and repeaters in the 446.0 to $\mathbf{4 4 6 . 2} \mathbf{~ M H z}$ band.

In view of the failure of the Authorities to control rampant violations, on behalf of the PMRTS Industry, we urge TRAI to recommend withdrawing this gazette notification to the Authorities, especially since it is distorting the level playing field for PMRTS.

Q23. Whether there is a need to mandate CMRTS licensees to migrate to spectrally efficient digital technologies in a time-bound manner? If yes, what should be the time frame for mandatory migration to spectrally efficient digital technologies? Kindly provide a detailed response with justification.

A23. In the interest of preserving the level playing field between PMRTS and CMRTS, especially with the end use (user application) and the end customer being same, the mandate to migrate to the spectrally efficient digital technologies should be enforced with the same time frame.

We recommend that the mandate for migrating all Analog systems to Digital should be 5 years after assignment of spectrum to PMRTS \& 2 years from the date guidelines are finalized by DOT for Captive/CMRTS (since spectrum assignment as required by CMRTS/Captive applicants has continued from 2014 till date to Captive/CMRTS while being denied to PMRTS).

Q24. In case your response to $\mathbf{Q 2 3}$ is in the negative, what provisions should be made to nudge and encourage CMRTS licensees to spectrally efficient digital technologies? Kindly provide a detailed response with justification.

A24. We have provided our recommendations in an affirmative response to Q23

Q25. Whether there is any other issue relevant for review of terms and conditions of the CMRTS License? Kindly provide a detailed responsewith justifications.

A25. Not applicable

Q26. Is there a need to review the license fee prescribed for PMRTS/CMRTS? Please justify your answer. If yes, please suggest detailed methodology for arriving at the license fees for PMRTS/CMRTS with justification.

A26. Given the size of the industry and the earlier consultation by TRAI on PMRTS we don't see any need to review the license fee prescribed for PMRTS. However, we would like to suggest reviewing the license fee prescribed for CMRTS for ensuring a level playing field.

Minimum license fee shall be as prescribed today for a specific service area not exceeding 30 Kms where coverage is desired. The only exceptions shall be Police, Fire, Defense and Government security.

Q27. Whether there is a need to review the allocation of spectrum for PMRTS? If yes, what changes should be made in the allocation of spectrum for PMRTS in the National Frequency Allocation Plan? Kindly provide a detailed response with justifications.

A27. There is no need to review the allocation of spectrum for PMRTS given the latest NFAP-2022 plan where PMRTS is allocated 811-814 MHz \& 814-819 MHz on a dedicated basis as these are the very bands where PMRTS is has been presently assigned spectrum for Digital \& Analog systems respectively. In view of the spectrum allocation applications pending with DOT and considering THE spectrum presently assigned by W.P.C together with estimated demand forecasted for the next 10 years, the PMRTS industry shall need a minimum of $\mathbf{8} \mathbf{~ M H z}$ of spectrum allocation in the $\mathbf{8 0 0}$ MHZ band (with all new assignments being in Digital and migration from Analog to Digital in next 5 years). This was recognized by TRAI even in their recommendations made in 2018.

The PMRTS industry shall migrate from Analog to Digital systems through a new channeling plan within the $811-814 \mathrm{MHz}$ and $814-819 \mathrm{MHz}$ bands (and their corresponding bands 45 MHZ apart) only as detailed in Annexure -1. The PMRTS industry is confident of completing this migration within 5 years of the new channeling plan and spectrum assignment from the same being made available by WPC.

Q28. What should be the method of assignment of spectrum for PMRTS?
(a) Auction; or
(b) Administrative

In the case of auction, what should be the methodology for auction of spectrum? Kindly provide a detailed justification.

Q29. In case it is decided to auction the frequency spectrum allocated toPMRTS, -
(a) What should be the eligibility conditions for participating in auction?
(b) Whether the entire available spectrum in the frequency bands identified for PMRTS in National Frequency Allocation Plan (NFAP) should be put to auction?
(c) What should be the block size of spectrum, and minimum bid quantity in terms of number of blocks?
(d) What should be the spectrum cap for each authorized area for useof spectrum?
(e) What should be the roll-out obligations associated with the assignment of spectrum? What should be the penalties upon non-conforming the roll-out obligations?
(f) What should be the period of assignment of spectrum?
(g) What should be the minimum period beyond which the spectrumacquired through auction may be permitted to be surrendered?
(h) What should be the process and associated terms and conditionsfor permitting surrender of spectrum through auction?

Kindly provide a detailed response with justification in respect of eachof the above.
Arya Omnitalk Radio Trunking Services Private Limited

A28.\&
A29. Unlike cellular access services, PMRTS is a relatively small industry and hence methodology of spectrum allocation can be different.

Assignment of spectrum through auction can only be considered if demand for spectrum is exceeding supply and there is a possibility of having to move to new frequency band to meet spectrum requirements in future.

In the present (continuing since 1997) and NFAP-2022 mandated Analog PMRTS band of 814-819 MHz/859-864 MHz, there are 200 channels available with $\mathbf{2 5} \mathbf{~ K H z}$ channel spacing. In this band of $5 \mathbf{M H z}$, if migration to spectrally efficient digital technologies is mandated through construction of an appropriate channeling plan as detailed in Annexure-2, it would result in $\mathbf{8 0 0}$ channels/800 Voice paths with a channel spacing of $6.25 \mathrm{KHz} / 12.5 \mathrm{KHz}$ respectively, depending upon the Digital technology chosen. This shows that there is no impending scarcity of spectrum for PMRTS.

Even considering 25 KHz Channel spacing as it exists today in the 814-819 MHz band , there are more than 130 channels (65% of all available channels) available for assignment in the highest populated PMRTS market like Delhi/NCR , evidencing abundant availability without any doubt.

In the cellular industry, millions of subscribers with high usage of voice, video and data results in constant demand for additional spectrum. On the contrary, PMRTS is a niche service used essentially for voice only by limited institutional clients in certain geographical pocket. With a total PMRTS subscriber base of less than 65,000 radio users nationally with a revenue of less than Rs 50 Crs., the Royalty and Spectrum Fee charges paid by the PMRTS providers is less than Rs.1.2 Crs today.

Therefore, there is no comparison possible between the PMRTS industry and a Wireless Access Service under the licensing framework of CMTS, UASL and UL in terms of either business potential, subscriber base, or spectrum requirement or revenues possible.

In view of the foregoing, it appears that there are adequate channels of spectrum available for assignment to PMRTS licensees. The supply is far exceeding the demand of spectrum and due to niche type of service the likely growth trajectory cannot be expected to go beyond 3-5 times the present size of the industry in the foreseeable future.

The PMRTS industry is of the view that auction of spectrum for such a small industry with a revenue potential of less than $\mathbf{0 . 1 \%}$ of the cellular industry revenue for 202223, along with abundant availability of spectrum, does not appear to be a worthwhile consideration at all.

Also if we look at the financials of a PMRTS industry operator, based on the present license fee, spectrum fee and royalty the profit will not exceed 15\% of the revenues. The PMRTS industry, vide its response to the TRAI Consultation paper is already recommending increase of spectrum royalty by 4 times the present tariff, Since ARPU cannot be significantly increased beyond present levels, the above increase in spectrum royalty recommended is likely to drive the profitability down only.

Thus given the total PMRTS Industry revenue of less than Rs 50 Crs, the total room available to the entire PMRTS Industry today is far less than Rs 2.5 Crs (assuming that the PMRTS operator will be allowed to make at least a PBT equal to $\mathbf{1 0 \%}$ of revenues).

Arya Omnitalk Radio Trunking Services Private Limited Regd. Off.: Unit No - 202, 2nd Floor, Summer Court, Magarpatta City, Pune - 411013, India Tel : 91-020-67470100 Fax: 91-020-67470199 CIN No. : U64120PN2003PTC018154

Moreover a study of the spectrum assignment methodologies adopted by countries other than India also reveals that in most countries the assignment is done on an administrative basis and at tariffs (License Fee and Spectrum Royalty \& Fee combined) far lower than those being made applicable in India.

Thus, from whichever angle we examine there is no merit in assignment of spectrum to PMRTS industry by auction.

Even if auction is chosen as the method of allocation of spectrum for PMRTS with a reserve price determined in accordance with the nature of service, the spectrum auction is very unlikely to be successful as in all likelihood the total bidding pool available with the PMRTS industry shall be less than Rs 2.5 Crs for the entire spectrum in the band 811 -819 MHz pan India.

Therefore, auction of spectrum does not appear to be the appropriate method for assignment to the PMRTS Industry.

In conclusion, the PMRTS industry recommends that taking into consideration factors viz. PMRTS total earning potential; low spectrum demand and high spectrum availability and spectrum assignment practices prevalent in majority of countries outside India, the assignment of spectrum for PMRTS should be made administratively on the basis of demand in the foreseeable future

Q30. In case auction methodology is to be followed for assignment of spectrum:
a) Whether the value of frequencies assigned to the PMRTS providers be derived by relating it to the value or auction determined prices of other IMT/5G bands

Arya Omnitalk Radio Trunking Services Private Limited Regd. Off.: Unit No-202, 2nd Floor, Summer Court, Magarpatta City, Pune - 411013, India Tel : 91-020-67470100 Fax: 91-020-67470199 CIN No. : U64120PN2003PTC018154
Branch Off.: Unit No. 226B, DLF Prime Towers, Phase-1, Okhla Industrial Area,

by using technical efficiency factor? If yes, with which spectrum band, should these frequencies be related and what efficiency factor or formula should be used? Please justify your suggestions.
b) Given the city wise allocation and the potential difference in financial/market parameters of PMRTS with respect to access services,should the valuation of frequency spectrum for these services derivedon the basis of IMT/5G prices be adjusted in order to account for the said distinctions? Please explain the adjustment methodology in detail.
c) Apart from the above approaches, which other valuation approaches can be adopted for valuation of spectrum assigned to PMRTS providers? Kindly support your suggestions with detailed methodologies, assumptions, and other relevant factors.
d) Is it appropriate to take the reserve price as $\mathbf{7 0 \%}$ of the valuation of spectrum? If not, what should be the ratio adopted between the reserve price for the auction and valuation of spectrum and why?
e) What should be the payment terms and conditions relating to upfront payment, moratorium period, number of installments to recover deferred payments, rate of discount etc.?

Please support your answer with detailed justification.

A30. Our response is provided in our answer to Q29 of the TRAI Consultation paper

Q31. Whether there are any other issues/ suggestions relevant to subject ? If yes, the same may kindly be furnished with proper justification.

A31. In conclusion, we would like to state the following:

- The PMRTS Industry has been starved of spectrum since July 2014 ! No spectrum has been issued, even on a provisional or interim basis, to the Industry as in the case of Captive /CMRTS, despite the Industry's willingness to furnish the same undertaking as given by the Captive/CMRTS applicant.
- It has been established beyond any doubt that the both the use case (user application) as well as the end customer are the same for PMRTS and Captive /CMRTS. An oil refinery like BPCL has an option to set up its own network (Captive/CMRTS or subscribe to PMRTS). Both business models can be seen in operation on the ground and both approaches are equally commercial in natureBPCL wants to improve communication efficiency and effectiveness to make their operations more productive and profitable. It is also evident that PMRTS is far more spectrum efficient as compared to Captive/CMRTS and deserves to be allowed to flourish, given the spirit of making the best use of Spectrum, the country's national resource.
- The total size of the PMRTS industry is less than Rs 50 Crs in revenue, dwarfed by long delays and indecision over how to assign spectrum to the Industry. The industry has its own unique niche of mission critical, short bursts of one-to-many voice communications, which is unique and time and again , the PMRTS Service has come to the rescue of both Government and private agencies for disaster relief in the wake of man-made and natural disasters like cyclones, floods, maintenance shut downs of a refinery, handling emergency communications or simply mission critical communication when alternate means of communication are failing or not available. It is because of this unique landscape or canvas that countries outside of India have let this industry flourish and blossom into its rightful size.
- The total spectrum required to be reserved for the industry is a mere $\mathbf{8 ~ M H z}$ in the

800 band, owing to operation in dense urban areas. Whatever methodology, whether administrative or is eventually chosen by the Authorities, it cannot and should not threaten the viability of the Industry.

In view of TRAI recommendations for PPDR made in 2018, and the role that private parties can play in setting networks we feel that both PPDR and PMRTS offer MCPTT as their unique value proposition. In the last 5 years we have not witnessed any interest in either any private operator interested in setting up a PPDR network, nor any Government agency coming forward to do so. Yet an inordinately large number of applications are pending with WPC for Spectrum assignment for PMRTS.

It may thus a good idea to presently keep 811-819 MHz for PMRTS and 806-811 MHz as well as 819 to 822 MHz for PPDR/ CMRTS. Based on the technology options available from PPDR vendors in the 800 MHz band, there is no requirement of contiguous spectrum for PPDR. In future, for 5G or higher technologies, NFAP 2022 has already reserved 50 MHz in the 4940-4990 MHz band.

We would also suggest that a PMRTS Operator be encouraged to run a PPDR Service in the assigned PPDR band, especially if a large part of the state geography is being targeted. In such a case, a PMRTS Operator should be allowed to run both PPDR as well as PMRTS from the same Equipment Infrastructure.

Apart from the other arguments furnished in our response to the TRAI Consultation paper above, we would like to comment on the " auction being the best methodology for allocation of all natural resources , including Spectrum" viewpoint.

If for example an entirely new township was being built from scratch in an otherwise uninhabited area, would it be possible to auction all the land at the highest possible commercial real estate prices? Our humble submission is that
many large tracts of land may have to allocated administratively for free or at tariffs way lower for end use such as parks, schools, hospitals, police stations, or other unique amenities with a considerably lower earning potential than prime real estate. PMRTS Industry is not prime real estate in the same context when compared with Access Services such as Cellular, where auction is the best methodology given its earning potential, billion plus subscribers over which the auctioned cost for Spectrum can be apportioned so as to form a small fraction/ miniscule percentage of their ARPU.

We urge the Authorities to take emergent steps to expeditiously decide and implement the spectrum allocation methodology in order to breathe some life into the long neglected PMRTS Industry and help it attain its rightful position in the canvas of Value Added Telecom Service!

Annexure 1

Improvement in Trunking Efficiency with increase in no. of

Channels

ACCESS DELAY TIMES

FIGURE 2-3

It is clear that CMRTS, typically a 10 channel system will have a far lower spectrum efficiency (no of radios per channel) as compared to a PMRTS system with a $\mathbf{2 0}$ channel system

ARYA OMNITALK

Annexure 2

Proposed Channeling Plan for PMRTS migration to Digital

(For Public Mobile Radio Trunking Service (PMRTS) providers operating in

814 MHz- 819 MHz / 859 MHz- 864 MHz band)

Contents

Abstract

1. INTENT 2. GENERAL 3. CHANNELING PLAN 4. REQUIREMENTS FOR USING SPECTRUM 5. PRINCIPLES OF ASSIGNMENT 6. PROPOSED IMPLEMENTATION PLAN 7. NEW ALLOCATION METHOD PROPOSED 8. APPENDIX-A-TABLE OF CURRENT 25 KHz CHANNELING PLAN NO. 6 AS PER NFAP 9. APPENDIX - B CHANNELING PLAN 12.5 KHZ AND 6.25 KHZ

AT A GLANCE 10. APPENDIX -C CHANNEL BANDWIDTH ARRANGEMENTS ($25 \mathrm{KHZ}, 12.5 \mathrm{KHZ}$ \& 6.25 KHZ) 11. APPENDIX- D CHANNELING ALLOTMENT PLAN($12.5 \mathrm{KHZ} \& 6.25 \mathrm{KHZ})$

1. INTENT

As per National Telecom Policy usage of spectrally efficient technologies should be encouraged so as to create a win-win situation for all stake holders viz. Regulator/Licensor, Operators and the end users. The current PMRTS Operators are offering the PMRT service largely using analog technology (barring few Operators who are migrating to Digital) and for them the assignment of spectrum is being done as per Channeling plan 6 (25 KHz bandwidth) of the NFAP which is reproduced in Appendix -A. As the PMRTS operators migrate from analog to digital technology there is a need to create a channeling plan for narrow bandwidth (12.5 KHz) and very narrow bandwidth (6.25 KHz) technologies, since there are different types of Digital technologies available requiring different channel bandwidth and hence different allocation of spectrum. As the regulation is technology neutral in India as in most of countries around the world, so the choice of technology is left to the Operator or market forces to determine.

Digital Trunked Radio Systems (DTRS) are two-way mobile radio systems consisting of mobile terminals, multiple-channel base stations and control stations. Trunking is the
pooling of radio channels of a DTRS, whereby users have automatic access to free channels of the system. DTR Systems may also have roaming capabilities and permit Direct Mode Operation (DMO) between mobile terminals.

DTRS applications include transmission of voice, data, image, paging, short messaging, facsimile and PSTN interconnection (if regulator permits) for host of user groups such as construction, fire \& safety Departments of public utilities, transport companies, service and maintenance companies, airline services and government agencies. The intended users of the said band ($806-824 \mathrm{MHz} \& 851-869 \mathrm{MHz}$) may be Public Operators of DTRS networks as well as private organizations/ corporation or government agencies. The operation of DTRS systems may be area based or of nation-wide roaming capabilities.

2. GENERAL

The PMRTS/CMRTS licenses in India are technology neutral as in most countries of the world. There are many technologies available in the market for Digital PMRTS/CMRTS and prominent amongst them are:-

- 12.5 KHz , 2-slot TDMA technology like DMR/ MotoTrbo, APCO phase -II
- 6.25 KHz FDMA technology like dPMR/NXDN
- 25 KHZ 4-slot TDMA technology like TETRA

All these technologies are spectrally efficient and can either provide 6.25 KHz or 6.25 KHz equivalence considering number of voice paths possible in 12.5 KHz 2 -slot TDMA being two or 25 KHz 4 -slot TDMA having four voice paths.
The following is an overview of some DTRS technologies in the industry:

2.1 TETRA

TETRA (Terrestrial Trunked Radio) is a standard developed by the European Telecommunications Standards Institute (ETSI). The purpose of the TETRA standard is to meet the needs of various Professional Mobile Radio (PMR) user organizations. The first version of TETRA standard was published in 1995.

TETRA is based on a 4-slot TDMA (Time Division Multiple Access) with 25 KHz physical radio channel bandwidth. TETRA standard supports Trunking mode and IP-based TETRA solutions are available.

TETRA 2 is the enhancement of the TETRA standard which provides improvement on data speed and voice codec. TETRA 2 has introduced TETRA Enhanced Data Service (TEDS) which offers higher data rates utilizing multiple bandwidths and modulation schemes. The TEDS offers 4 different RF channel bandwidths of $25 \mathrm{KHz}, 50 \mathrm{KHz}, 100 \mathrm{KHz}$ and 150 KHz .

2.2 APCO-P25

APCO-P25 (Association of Public-Safety Communications Officials - Project 25) is a common standard for Digital Trunked Radio Systems used by public safety agencies in North America to enable them to communicate with other agencies and mutual aid
response teams in emergencies.
APCO-P25 is based on FDMA (Frequency Division Multiple Access) capable of operating in 12.5 kHz and/or 25 kHz physical radio channel bandwidths. This standard allows backward compatibility with analogue systems and supports both trunked and conventional operation models. IP based APCO-P25 solutions are also available.

2.3 APCO-P25 Phase 2

The APCO-P25 standard (also known as APCO-P25 Phase 1) is further improved on spectrum efficiency with the development of APCO-P25 Phase 2 using 2-slot TDMA scheme.

2.4 NXDN

NXDN is a digital air interface protocol for mobile communication. It was developed jointly by ICOM Incorporated and Kenwood Corporation, Japan. This standard is based on FDMA (Frequency Division Multiple Access) and defines both trunked and conventional modes of operation. There are currently over 30 companies who are part of the NXDN forum; please visit www.nxdn-forum.com.

NXDN is a digital radio communications protocol using 4-Level FSK (4LFSK) modulation capable of fitting into both 12.5 kHz and 6.25 kHz physical radio channel bandwidths (9600 bps and 4800 bps respectively).
NXDN has been designed keeping the current Analog users in mind so that current investments in the analog infrastructure and terminals can be protected. NXDN has backward compatibility with the Analog Trunked Radio Systems (LTR), allows graceful migration from Analog to Digital and protects investments in RF sub-systems and power amplifiers and offers Dual/Mixed mode capability that allows both Digital and analog radio terminals to be operated together on the same infrastructure.

DPMR is a 6.25 KHz FDMA standard like NXDN developed by ETSI.

2.5 DMR

DMR (Digital Mobile Radio) is a standard developed by the European Telecommunications Standards Institute (ETSI) under its Electromagnetic compatibility and Radio spectrum Matters (ERM). The standard (ETSI TS 102 361) is based on a two-slot TDMA protocol. DMR applies TDMA method of spectral efficiency where 12.5 kHz channel will be divided into two equivalent time slots. The DMR design is capable to support trunked radio networks range from 12.5 kHz physical radio channel to wide area systems incorporating multiple physical radio channels extended over many radio sites. It provides a migration path from analogue to digital with its ability to operate in both analogue and digital modes. MotoTrbo is a 12.5 KHz 2 slot TDMA technology from Motorola that is a variant of DMR.

3. CHANNELING PLAN

The Mobile Trunked Radio Operators Association (MTROA) recommends that in order to
ensure most efficient use of the scarce spectrum resource, use of spectrally efficient technologies must be encouraged. WPC needs to build a separate channeling plan for 6.25 KHz FDMA technology besides keeping flexibility to also allocate spectrum with a 12.5 KHz channel spacing (for 2 slot TDMA)and a 25 KHz channel spacing (for four slot TDMA). The allocation can be made based on the Trunked Radio Technology chosen by the PMRTS Operator.

This document considers the band currently being used by analog PMRTS operators i.e. $814 \mathrm{MHz} \mathrm{-} 819 \mathrm{MHz} / 869 \mathrm{MHz}-864 \mathrm{MHz}$ This band has 200 Channels of 25 KHz which are being allocated as per channeling plan 6 of NFAP placed at Appendix -A. The same band is proposed to be split into 400 channels of 12.5 KHz bandwidth and 800 channels of 6.25 KHz bandwidth as per Appendix- B .

Although the standard channel spacing is 12.5 KHz , it provides flexibility to operate two or more contiguous channels of 12.5 KHz . Operators may also utilize smaller channel bandwidth of 6.25

KHz channel spacing. WPC should assign a single channel based on channel spacing of 6.25 KHz or 12.5 KHz or combination of multiple channels of 12.5 KHz channel spacing depending on the technology to be deployed by the operator or user. The channeling plan for 6.25 KHz and 12.5 KHz is shown in Appendix B and the general channeling arrangement for $25 \mathrm{KHz}, 12.5 \mathrm{KHz}$ and 6.25 KHz is shown in Appendix C.

Channels may be allotted according to the channel allotment plan in Appendix D.
The channel allotment plan is designed to minimize inter-modulation and frequency interference problems by assigning co-sited channels that are 250 KHz apart. The frequency blocks $A / A^{\prime} \& B / B^{\prime}$ each containing 200 channels of 12.5 kHz , are divided into ten (10) sub-blocks (i.e. A01-A10 and B01-B10,) respectively.

Co-location assignments will be by sub-blocks (or part thereof) of up to a maximum of twenty (20) channels within the same sub-block per DTRS base/repeater station. The number of channels/sub-blocks assigned should be based on the service requirement of the Operator and to be determined by the WPC.

4. REQUIREMENTS FOR USING SPECTRUM

National Telecom Policy - 2012 recognizes that the evolution from analog to digital technology has facilitated the conversion of voice, data and video to the digital form. Increasingly, these are now being rendered through single networks bringing about a convergence in networks, services and also devices. Hence, it is now imperative to move towards convergence between various services, networks, platforms, technologies and overcome the existing segregation of licensing, registration and regulatory mechanisms in these areas to enhance affordability, increase access, delivery of multiple services and reduce cost. Under the Indian Telephone \& Telegraphs Act 1885 \& its amendments thereof, PMRTS providers were previously classified under the PMRTS license category. DOT now requires companies to migrate to the Unified License category for new PMRTS Licenses.

The minimum key characteristics of the equipment to be deployed shall be governed by the minimum specifications viz.

Max RF power output

- Base station up to 100 Watts
- Vehicle Mobile up to 30Watts
- Hand-held up to 03 Watts

On a case to case basis, higher power may be permitted if acceptable technical justification is provided;

Adjacent channel spacing 800 MHz band: 25 KHz (11KOF3E)
Duplex Spacing 800 MHz band: (TX-RX Spacing) 45 MHz
Capacity enhancing techniques are continually being developed. This allows for the adoption of such techniques for more efficient use of spectrum, without reducing quality of service. Good cell-planning practice and frequency reuse should be adopted to maximize spectrum usage.

Channel loading of DTRS should be such that the maximum use is made of the available spectrum while providing reasonable Grade of Service (GoS). This requires the loading of Public and Private Systems to be such as to provide a GoS of not exceeding 5%.

The Erlang C model should be used as a guide to assess the channel needs of the applicant. This model is adopted as the reference as it assumes that the system will queue a certain number of blocked calls. The GoS will be defined by a specified delay, in message lengths, such that delayed calls will not exceed the specified delay with a probability P (t) of 0.05 (5\%). That is, 95% of the calls placed will not be delayed by greater than the specified delay. An Erlang C table is provided in Appendix E for reference.

The GoS is critical for emergency services as well for local government agencies. The corresponding GoS for public safety systems (e.g., police, ambulance and fire department) is 2.5%. However, the level of GoS may be changed if deemed necessary by WPC based on specific service requirements.

5. PRINCIPLES OF ASSIGNMENT

The assignment shall be done based on a 'first come first served' basis to the new applicants. The existing PMRTS operators holding the spectrum as per APPENDIX-F shall be allocated channels based on the following criteria:-
a) the number of channels held currently in analog Trunked Radio System (TRS) in Appendix F;
b) requirements of the Technology chosen; and
c) Spectrum allocation efficiency.

The new allocation should be equal to the number of channels held for either 12.5 KHz channel bandwidth or 6.25 KHz channel bandwidth depending on the Technology chosen by the Operator. The current holding is of 25 KHz channel bandwidth and the new allocation shall be based on 25 KHz or 12.5 KHz or 6.25 KHz depending on the Technology chosen by the PMRTS operator. The same approach can be applied to existing CMRTS users as per Appendix-F.

The current loading criterion operative is of 90 subscribers per channel for a 25 KHz channel bandwidth. Initial spectrum of 5 channels is allocated and on achieving a loading of 450 subscribers, additional channels are considered for allocation. Based on the same criteria and assuming that the loading efficiency would degrade by 30% due to one channel of each site getting occupied in a multi-site digital system for group calls the proposed loading efficiency for Digital systems should be 10.08 radios per KHz for 2 slot TDMA technologies giving 6.25 KHz equivalence or a 6.25 KHz channel bandwidth FDMA technologies.

The existing operators should be given a defined time frame to migrate to Digital technology with a spectrally efficient 6.25 KHz technology or a 6.25 KHz equivalent channel bandwidth and they should be given spectrum equivalent to the current spectrum held by them as per Annexure-G. Additional spectrum allocation to the existing PMRTS Operators should be assigned based on the loading criteria of 10.08 radios $/ \mathrm{KHz}$ of spectrum.

The new entrants should be assigned spectrum on a 'first come first served' basis. In the event of unavailability of spectrum, applicants should be placed in the queue that should be reviewed periodically.

Based on the same principle the existing CMRTS users should be asked to migrate to spectrally efficient technologies in a time bound manner with equal number of channels allocation done in Digital as being currently held by them as in Appendix-G.

6. PROPOSED IMPLEMENTATION PLAN

The reservation of the spectrum blocks for the migration of the listed PMRTS Operators in Appendix-F of the 800 MHz band shall be made for the new frequency allocations as per new channeling plan, as required by the Operator in 12.5 KHz or 6.25 KHz band.

The new PMRTS entrants should be assigned spectrum on a 'first come first served'basis.

7. NEW ALLOCATION METHOD PROPOSED

Following examples illustrate the proposed allocation plan for existing operator.

[^1]```
PMRTS Operator : Quick calls Pvt. Ltd.
Service Area : Chennai
Current Spectrum Allocated : 7D
```

Centre frequencies of block 7D allocated as per plan 6 of NFAP are

|  |  | Channel No. | RX Freq. | TX Freq. |
| :---: | :---: | :---: | :---: | :---: |
| Existing 25 KHz | I | 37 | 818.0875 | 863.0875 |
| Plan 6 of NFAP | II | 77 | 817.0875 | 862.0875 |
|  | III | 117 | 816.0875 | 861.0875 |
|  | IV | 157 | 815.0875 | 860.0875 |
|  | V | 197 | 814.0875 | 859.0875 |

Current Subscriber Loading :450
Now after loading of 450 subscribers on 5 Channels, the PMRTS operator requesting migration to Digital ( 12.5 KHz Technology) for all new subscribers and asking for 5 years to migrate current Analog Subscribers to Digital.

## Solution for above migration from Analog to Digital for 12.5 KHz band will be

Look for the free spectrum block for Chennai region from within NFAP Plan 6 such that there is a minimum separation of 250 KHz between adjacent channels (refer proposed 12.5 KHz channel allocation plan). All Spectrum blocks except 1, 3,5,7,9 and 10 are allocated.

Supposing WPC chooses block 1A for allocation of spectrum for 12.5 KHz technology. Hence the new allocation of 12.5 KHz center frequencies to be issued (5 Channel Pairs) shall be

|  |  | Channel No. | RX Freq. | TX Freq. |
| :---: | :---: | :---: | :---: | :---: |
| Refer 12.5 KHz | I | 1 | 818.99375 | 863.99375 |
| Plan Block 1 A <br> to be allocated | II | 41 | 818.49375 | 863.49375 |
|  | III | 81 | 817.99375 | 862.99375 |
|  | IV | 121 | 817.49375 | 862.49375 |
|  | V | 161 | 816.99375 | 861.99375 |

After completion of migration as per period granted for migration the analog frequencies are surrendered by the operator and these frequencies can be reused or re-allotted as per new digital plans as the case may be.

EXAMPLE 2: Migration from Analog 25 KHz (Existing) to Digital 6.25 KHz (Proposed New)
PMRTS Operator: Bhilwara Telenet Services Private Limited
Service Area: Mumbai Metro
Current Spectrum Allocated: 9A
Centre frequencies of block 9A allocated as per plan 6 of NFAP are

## 1A from existing 25 KHz Plan

|  |  | Channel No. | RX Freq. | TX Freq. |
| :---: | :---: | :---: | :---: | :---: |
|  | I | 9 | 818.7875 | 863.7875 |
| Existing 25 KHz |  |  |  |  |
| Plan | II | 49 | 817.7875 | 862.7875 |
|  | III | 89 | 816.7875 | 861.7875 |
|  | IV | 129 | 815.7875 | 860.7875 |
|  | V | 169 | 814.7875 | 859.7875 |

## Current Subscriber Loading : 450

Now after loading of 450 subscribers on 5 Channels, the PMRTS operator requesting migration to Digital (6.25 KHz Technology) for all new subscribers and asking for 5 years to migrate current Analog Subscribers to Digital.

## Solution for above migration from Analog to Digital for 6.25 KHz band will be

Look for the free spectrum block for Mumbai Metro region from within NFAP Plan 6 such that there is a minimum separation of 250 KHz between adjacent channels (refer proposed 6.25 KHz channel allocation plan). All Spectrum blocks except 2, 6 and 7 are allocated.

Supposing WPC chooses block 2A for allocation of spectrum for 6.25 KHz technology. Hence the new allocation of 6.25 KHz center frequencies to be issued (5 Channel Pairs) shall be

|  |  | Channel No. | RX Freq. | TX Freq. |
| :---: | :---: | :---: | :---: | :---: |
|  | I | 2 a | 818.978125 | 863.978125 |
| Refer 6.25 KHz <br> Plan Block 2 A to <br> be allocated | II | 42 a | 818.478125 | 863.478125 |
|  | III | 82 a | 817.978125 | 862.978125 |
|  | IV | 122 a | 817.478125 | 862.478125 |
|  | V | 162 a | 816.978125 | 861.978125 |

After completion of migration as per period granted for migration, the analog frequencies shall be surrendered by the operator and these frequencies shall be reused or re-allotted afresh as per new digital plans of 12.5 KHz or 6.25 KHz as the case may be.

## 8. APPENDIX-A-TABLE OF CURRENT 25 KHz CHANNELING PLAN NO. 6 AS PER

 NFAPChanneling Plans
(Plan No-6)
R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE FOR THE FREQUENCY OF 814-819 MHz AND 859-864 MHz

| $\frac{\text { S.No. }}{1}$ |  | Channel Arrangement |  |  | 161 | Block No. | 1A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 41 | 81 | 121 |  |  |  |
|  | 21 | 61 | 101 | 141 | 181 | ------------------------ | 1B |
|  | 11 | 51 | 91 | 131 | 171 |  | 1 C |
|  | 31 | 71 | 111 | 151 | 191 | ----------------------- | 1D |
| 2 | 2 | 42 | 82 | 122 | 162 | ------------------------ | 2A |
|  | 22 | 62 | 102 | 142 | 182 | ----------------------- | 2B |
|  | 12 | 52 | 92 | 132 | 172 |  | 2C |
|  | 32 | 72 | 112 | 152 | 192 |  | 2D |
| 3 | 3 | 43 | 83 | 123 | 163 |  | 3A |
|  | 23 | 63 | 103 | 143 | 183 | ------------------------- | 3B |
|  | 13 | 53 | 93 | 133 | 173 | ---------------------- | 3C |
|  | 33 | 73 | 113 | 153 | 193 | ------------------------ | 3D |
| 4 | 4 | 44 | 84 | 124 | 164 | ------------------------ | 4A |
|  | 24 | 64 | 104 | 144 | 184 | --------------------------- | 4B |
|  | 14 | 54 | 94 | 134 | 174 | -------------------------- | 4C |
|  | 34 | 74 | 114 | 154 | 194 | ------------------------- | 4D |
| 5 | 5 | 45 | 85 | 125 | 165 |  | 5A |
|  | 25 | 65 | 105 | 145 | 185 |  | 5B |
|  | 15 | 55 | 95 | 135 | 175 |  | 5C |
|  | 35 | 75 | 115 | 155 | 195 |  | 5D |
| 6 | 6 | 46 | 86 | 126 | 166 |  | 6A |
|  | 26 | 66 | 106 | 146 | 186 |  | 6B |
|  | 16 | 56 | 96 | 136 | 176 | ----------------------- | 6C |
|  | 36 | 76 | 116 | 156 | 196 | ----------------------- | 6D |
| 7 | 7 | 47 | 87 | 127 | 167 | ----------------------- | 7A |
|  | 27 | 67 | 107 | 147 | 187 | ---------------------- | 7B |
|  | 17 | 57 | 97 | 137 | 177 | ----------------------- | 7C |
|  | 37 | 77 | 117 | 157 | 197 | ------------------------ | 7D |

R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE FOR THE FREQUENCY OF 814-819 MHz AND 859-864 MHz

| 8 | 8 | 48 | 88 | 128 | 168 | ---------------------- | 8A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 28 | 68 | 108 | 148 | 188 | ------------ | 8B |
|  | 18 | 58 | 98 | 138 | 178 |  | 8C |
|  | 38 | 78 | 118 | 158 | 198 |  | 8D |
| 9 | 9 | 49 | 89 | 129 | 169 |  | 9A |
|  | 29 | 69 | 109 | 149 | 189 |  | 9 B |
|  | 19 | 59 | 99 | 139 | 179 |  | 9 C |
|  | 39 | 79 | 119 | 159 | 199 |  | 9 D |
| 10 | 10 | 50 | 90 | 130 | 170 |  | 10A |
|  | 30 | 70 | 110 | 150 | 190 |  | 10B |
|  | 20 | 60 | 100 | 140 | 180 | ------------------------ | 10C |
|  | 40 | 80 | 120 | 160 | 200 | -------- | 10D |

Note: - Each set of 5 frequency pairs shall be assigned in the order of $A$ then $B$ then $C$ and then D

| R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE |  |  |
| :---: | :---: | :---: |
| FOR THE FREQUENCY OF 814-819 MHz AND 859-864 MHz |  |  |
| 25 KHz PLAN WITH 45 MHz DUPLEX SEPERATION |  |  |
| CHL.PAIR NO. | BASE TRANSMIT (KHz) | BASE RECEIVE (KHz) |
| 200 | 814012.5 | 859012.5 |
| 199 | 814037.5 | 859037.5 |
| 198 | 814062.5 | 859062.5 |
| 197 | 814087.5 | 859087.5 |
| 196 | 814112.5 | 859112.5 |
| 195 | 814137.5 | 859137.5 |
| 194 | 814162.5 | 859162.5 |
| 193 | 814187.5 | 859187.5 |
| 192 | 814212.5 | 859212.5 |
| 191 | 814237.5 | 859237.5 |
| 190 | 814262.5 | 859262.5 |
| 189 | 814287.5 | 859287.5 |
| 188 | 814312.5 | 859312.5 |
| 187 | 814337.5 | 859337.5 |
| 186 | 814362.5 | 859362.5 |
| 185 | 814387.5 | 859387.5 |
| 184 | 814412.5 | 859412.5 |
| 183 | 814437.5 | 859437.5 |
| 182 | 814462.5 | 859462.5 |
| 181 | 814487.5 | 859487.5 |
| 180 | 814512.5 | 859512.5 |
| 179 | 814537.5 | 859537.5 |
| 178 | 814562.5 | 862537.5 |
| 177 | 814587.5 | 859587.5 |
| 176 | 814612.5 | 859612.5 |
| 175 | 814637.5 | 859637.5 |
| 174 | 814662.5 | 859662.5 |
| 173 | 814687.5 | 859687.5 |
| 172 | 814712.5 | 859712.5 |
| 171 | 814737.5 | 859737.5 |
| 170 | 814762.5 | 859762.5 |


| 169 | 814787.5 | 859787.5 |
| :---: | :---: | :---: |
| 168 | 814812.5 | 859812.5 |
| 167 | 814837.5 | 859837.5 |
| 166 | 814862.5 | 859862.5 |
| 165 | 814887.5 | 859887.5 |
| 164 | 814912.5 | 859912.5 |
| 163 | 814937.5 | 859937.5 |
| 162 | 814962.5 | 859962.5 |
| 161 | 814987.5 | 859987.5 |
| CHL.PAIR NO. | BASE TRANSMIT (KHz) | BASE RECEIVE (KHz) |
|  |  |  |
| 160 | 815012.5 | 860012.5 |
| 159 | 815037.5 | 860037.5 |
| 158 | 815062.5 | 860062.5 |
| 157 | 815087.5 | 860087.5 |
| 156 | 815112.5 | 860112.5 |
| 155 | 815137.5 | 860137.5 |
| 154 | 815162.5 | 860162.5 |
| 153 | 815187.5 | 860187.5 |
| 152 | 815212.5 | 860212.5 |
| 151 | 815237.5 | 860237.5 |
| 150 | 815262.5 | 860212.5 |
| 149 | 815287.5 | 860287.5 |
| 148 | 815312.5 | 860312.5 |
| 147 | 815337.5 | 860337.5 |
| 146 | 815362.5 | 860362.5 |
| 145 | 815387.5 | 860387.5 |
| 144 | 815412.5 | 860412.5 |
| 143 | 815437.5 | 860437.5 |
| 142 | 815462.5 | 860462.5 |
| 141 | 815487.5 | 860487.5 |
| 140 | 815512.5 | 860512.5 |
| 139 | 815537.5 | 860537.5 |
| 138 | 815562.5 | 860562.5 |
| 137 | 815587.5 | 860687.5 |
| 136 | 815612.5 | 860612.5 |
| 135 | 815637.5 | 860637.5 |
| 134 | 815662.5 | 860662.5 |
| 133 | 815687.5 | 860687.5 |
| 132 | 815712.5 | 860712.5 |
| 131 | 815737.5 | 860737.5 |
| 130 | 815762.5 | 860762.5 |
| 129 | 815787.5 | 860787.5 |


| 128 | 815812.5 | 860812.5 |
| :---: | :---: | :---: |
| 127 | 815837.5 | 860837.5 |
| 126 | 815862.5 | 860862.5 |
| 125 | 815887.5 | 860887.5 |
| 124 | 815912.5 | 860912.5 |
| 123 | 815937.5 | 860937.5 |
| 122 | 815962.5 | 860962.5 |
| 121 | 815987.5 | 860987.5 |
| 120 | 816012.5 | 861012.5 |
| 119 | 816037.5 | 861037.5 |
| 118 | 816062.5 | 861062.5 |
| CHL.PAIR NO. | BASE TRANSMIT (KHz) | BASE RECEIVE (KHz) |
| 117 | 816087.5 | 861087.5 |
| 116 | 816112.5 | 861112.5 |
| 115 | 816137.5 | 861137.5 |
| 114 | 816162.5 | 861162.5 |
| 113 | 816187.5 | 861187.5 |
| 112 | 816212.5 | 861212.5 |
| 111 | 816237.5 | 861237.5 |
| 110 | 816262.5 | 861262.5 |
| 109 | 816287.5 | 861287.5 |
| 108 | 816312.5 | 861312.5 |
| 107 | 816337.5 | 861337.5 |
| 106 | 816362.5 | 861362.5 |
| 105 | 816387.5 | 861387.5 |
| 104 | 816412.5 | 861412.5 |
| 103 | 816437.5 | 861437.5 |
| 102 | 816462.5 | 861462.5 |
| 101 | 816487.5 | 861487.5 |
| 100 | 816512.5 | 861512.5 |
| 99 | 816537.5 | 861537.5 |
| 98 | 816562.5 | 861562.5 |
| 97 | 816587.5 | 861587.5 |
| 96 | 816612.5 | 861612.5 |
| 95 | 816637.5 | 861637.5 |
| 94 | 816662.5 | 861662.5 |
| 93 | 816687.5 | 861687.5 |
| 92 | 816712.5 | 861712.5 |
| 91 | 816737.5 | 861737.5 |
| 90 | 816762.5 | 861762.5 |
| 89 | 816787.5 | 861787.5 |
| 88 | 816812.5 | 861812.5 |


| 87 | 816837.5 | 861837.5 |
| :---: | :---: | :---: |
| 86 | 816862.5 | 861862.5 |
| 85 | 816887.5 | 861887.5 |
| 84 | 816912.5 | 861912.5 |
| 83 | 816937.5 | 861937.5 |
| 82 | 816962.5 | 861962.5 |
| 81 | 816987.5 | 861987.5 |
| 80 | 817012.5 | 862012.5 |
| 79 | 817037.5 | 862037.5 |
| 78 | 817062.5 | 862062.5 |
| 77 | 817087.5 | 862087.5 |
| 76 | 817112.5 | 862112.5 |
| 75 | 817137.5 | 862137.5 |
| CHL.PAIR NO. | BASE TRANSMIT (KHz) | BASE RECEIVE (KHz) |
|  |  |  |
| 74 | 817162.5 | 862162.5 |
| 73 | 817187.5 | 862187.5 |
| 72 | 817212.5 | 862212.5 |
| 71 | 817237.5 | 862237.5 |
| 70 | 817262.5 | 862262.5 |
| 69 | 817287.5 | 862287.5 |
| 68 | 817312.5 | 862312.5 |
| 67 | 817337.5 | 862337.5 |
| 66 | 817362.5 | 862362.5 |
| 65 | 817387.5 | 862387.5 |
| 64 | 817412.5 | 862412.5 |
| 63 | 817437.5 | 862437.5 |
| 62 | 817462.5 | 862462.5 |
| 61 | 817487.5 | 862487.5 |
| 60 | 817512.5 | 862512.5 |
| 59 | 817537.5 | 862537.5 |
| 58 | 817562.5 | 862562.5 |
| 57 | 817587.5 | 862587.5 |
| 56 | 817612.5 | 862612.5 |
| 55 | 817637.5 | 862637.5 |
| 54 | 817662.5 | 862662.5 |
| 53 | 817687.5 | 862687.5 |
| 52 | 817712.5 | 862712.5 |
| 51 | 817737.5 | 862737.5 |
| 50 | 817762.5 | 862762.5 |
| 49 | 817787.5 | 862787.5 |
| 48 | 817812.5 | 862812.5 |
| 47 | 817837.5 | 862837.5 |


| 46 | 817862.5 | 862862.5 |
| :---: | :---: | :---: |
| 45 | 817887.5 | 862887.5 |
| 44 | 817912.5 | 862912.5 |
| 43 | 817937.5 | 862937.5 |
| 42 | 817962.5 | 862962.5 |
| 41 | 817987.5 | 862987.5 |
| 40 | 818012.5 | 863012.5 |
| 39 | 818037.5 | 863037.5 |
| 38 | 818062.5 | 863062.5 |
| 37 | 818087.5 | 863087.5 |
| 36 | 818112.5 | 863112.5 |
| 35 | 818137.5 | 863137.5 |
| 34 | 818162.5 | 863162.5 |
| 33 | 818187.5 | 863187.5 |
| 32 | 818212.5 | 863212.5 |
| CHL.PAIR NO. | BASE TRANSMIT (KHz) | BASE RECEIVE (KHz) |
|  |  |  |
| 31 | 818237.5 | 863237.5 |
| 30 | 818262.5 | 863262.5 |
| 29 | 818287.5 | 863287.5 |
| 28 | 818312.5 | 863312.5 |
| 27 | 818337.5 | 863337.5 |
| 26 | 818362.5 | 863362.5 |
| 25 | 818387.5 | 863387.5 |
| 24 | 818412.5 | 863412.5 |
| 23 | 818437.5 | 863437.5 |
| 22 | 818462.5 | 863462.5 |
| 21 | 818487.5 | 863487.5 |
| 20 | 818512.5 | 863512.5 |
| 19 | 818537.5 | 863537.5 |
| 18 | 818562.5 | 863562.5 |
| 17 | 818587.5 | 863587.5 |
| 16 | 818612.5 | 863612.5 |
| 15 | 818637.5 | 863637.5 |
| 14 | 818662.5 | 863662.5 |
| 13 | 818687.5 | 863687.5 |
| 12 | 818712.5 | 863712.5 |
| 11 | 818737.5 | 863737.5 |
| 10 | 818762.5 | 863762.5 |
| 9 | 818787.5 | 863787.5 |
| 8 | 818812.5 | 863812.5 |
| 7 | 818837.5 | 863837.5 |
| 6 | 818862.5 | 862862.5 |


| 5 | 818887.5 | 863887.5 |
| :--- | :--- | :--- |
| 4 | 818912.5 | 863912.5 |
| 3 | 818937.5 | 863937.5 |
| 2 | 818962.5 | 863962.5 |
| 1 | 818987.5 | 863987.5 |

## 9. APPENDIX-B CHANNELING PLAN 12.5 KHZ AND 6.25 KHZ

New Frequency Allocation plan (derived from existing NFAP Scheme No.6)

| 1 | Existing Centre Frequency 25 KHz spacing | 863.9875 (Channel I defined in NFAP Plan No. 6 ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Proposed } \\ & 12.5 \mathrm{KHz} \end{aligned}$ | ( Subtracting -6.25 KHzfrom above Channel I ) |  | ( Adding +6.25 KHz from above Channel I ) |  |
| 2 | Spacing spots (new center frequencies will be) | 863.98125 (Channel 1 defined in new table below) |  | 863.99375 (Channel 2 defined in new table below) |  |
|  | Creation of 4 No 6.25 KHz Channel spacing spots (new center frequencies will be) | (Subtracting 3.125 KHz from Channel 1) | (Adding $+3.125 \mathrm{KHz}$ from channel 1) | (Subtracting $-3.125 \mathrm{KHz}$ from channel 2) | (Adding +3.125 KHz from channel 2) |
| 3 |  | 863.978125 <br> (Channel 1a defined in new table below) | 863.984375 <br> (Channel <br> 1b defined <br> in new table below) | 863.990625 <br> (Channel 2a defined in new table below) | 863.996875 <br> (Channel 2b defined in new table below) |

10. AT A GLANCE

814-819 MHz / 859-864 MHz Band

| Existing Channels | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | up to ------------ | 198 | 199 | 200 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of Existing Blocks and <br> Channels |  | 10 Blocks with 20 channels each |  |  |  |  |  |  |  |  |  |  |

Overview of spectrum issued \& available for $12.5 \mathrm{KHz} / 6.25 \mathrm{KHz}$ Digital Technologies

| Region | No of Blocks issued as per existing scheme (NFAP Plan 6) | No of Channels Issued | No of Blocks available for proposed plan | No of Channels Available | No of Blocks Reserved for 12.5 KHz allocation | No of Channels reserved for 12.5 KHz allocation | No of Blocks Reserved for 6.25 KHz allocation | No of Channels reserved for $6.25 \mathrm{KHz}$ <br> allocation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Delhi NCR | 3.50 | $3.50 \times 20=70$ | $\begin{gathered} 10-3.50= \\ 6.50 \end{gathered}$ | $6.50 \times 20=130$ | 6.50 | $\begin{gathered} 6.50 \times 20= \\ 130^{*} \\ \hline \end{gathered}$ | $6.50 \times 2=13.0$ | $13 \times 20=260 * *$ |
| Mumbai | 3.75 | $3.75 \times 20=75$ | $\begin{gathered} 10-3.75= \\ 6.25 \end{gathered}$ | $6.25 \times 20=125$ | 6.25 | $\begin{gathered} 6.25 \times 20= \\ 125^{*} \end{gathered}$ | $6.25 \times 2=12.5$ | $12.5 \times 20=250 * *$ |
| Pune | 1.25 | $1.25 \times 20=25$ | $\begin{gathered} 10-1.25= \\ 8.75 \end{gathered}$ | $8.75 \times 20=175$ | 8.75 | $\begin{gathered} 8.75 \times 20= \\ 175^{*} \end{gathered}$ | $8.75 \times 2=17.5$ | $17.5 \times 20=350 * *$ |
| Bangalore | 2.25 | $2.25 \times 20=45$ | $\begin{gathered} 10-2.25= \\ 7.75 \end{gathered}$ | $7.75 \times 20=155$ | 7.75 | $\begin{gathered} 7.75 \times 20= \\ 155^{*} \\ \hline \end{gathered}$ | $7.75 \times 2=15.5$ | $15.5 \times 20=310^{* *}$ |
| Chennai | 2.25 | $2.25 \times 20=45$ | $\begin{gathered} 10-2.25= \\ 7.75 \\ \hline \end{gathered}$ | $7.75 \times 20=155$ | 7.75 | $\begin{gathered} 7.75 \times 20= \\ 155^{*} \\ \hline \end{gathered}$ | $7.75 \times 2=15.5$ | $15.5 \times 20=310^{* *}$ |
| Hyderabad | 1.00 | $1.00 \times 20=20$ | $\begin{gathered} 10-1.00= \\ 9.00 \end{gathered}$ | $9.00 \times 20=180$ | 9.00 | $\begin{gathered} 9.00 \times 20= \\ 180^{*} \end{gathered}$ | $9.00 \times 2=18.0$ | $18 \times 20=360 * *$ |
| Jaipur | 0.50 | $0.50 \times 20=10$ | $\begin{gathered} 10-0.50= \\ 9.50 \end{gathered}$ | $9.50 \times 20=190$ | 9.50 | $\begin{gathered} 9.50 \times 20= \\ 190^{*} \end{gathered}$ | $9.50 \times 2=19.0$ | $19 \times 20=380^{* *}$ |
| Ahmedabad | 0.50 | $0.50 \times 20=10$ | $\begin{gathered} 10-0.50= \\ 9.50 \end{gathered}$ | $9.50 \times 20=190$ | 9.50 | $\begin{gathered} 9.50 \times 20= \\ 190^{*} \\ \hline \end{gathered}$ | $9.50 \times 2=19.0$ | $19 \times 20=380^{* *}$ |
| Baroda | 0.75 | $0.75 \times 20=15$ | $\begin{gathered} 10-0.75= \\ 9.25 \end{gathered}$ | $9.25 \times 20=185$ | 9.25 | $\begin{gathered} 9.25 \times 20= \\ 185^{*} \\ \hline \end{gathered}$ | $9.25 \times 2=18.5$ | $18.5 \times 20=370 * *$ |


| Surat | 0.75 | $0.75 \times 20=15$ | $\begin{gathered} 10-0.75= \\ 9.25 \end{gathered}$ | $9.25 \times 20=185$ | 9.25 | $\begin{gathered} 9.25 \times 20= \\ 185^{*} \end{gathered}$ | $9.25 \times 2=18.5$ | $18.5 \times 20=370 * *$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bharuch | 0.25 | $0.25 \times 20=05$ | $\begin{gathered} 10-0.25= \\ 9.75 \end{gathered}$ | $9.75 \times 20=195$ | 9.75 | $\begin{gathered} 9.75 \times 20= \\ 195^{*} \end{gathered}$ | $9.75 \times 2=19.5$ | $19.5 \times 20=390 * *$ |
| Dahej | 0.25 | $0.25 \times 20=05$ | $\begin{gathered} 10-0.25= \\ 9.75 \end{gathered}$ | $9.75 \times 20=195$ | 9.75 | $\begin{gathered} 9.75 \times 20= \\ 195^{*} \end{gathered}$ | $9.75 \times 2=19.5$ | $19.5 \times 20=390 * *$ |
| Indore | 0.50 | $0.50 \times 20=10$ | $\begin{gathered} 10-0.50= \\ 9.50 \end{gathered}$ | $9.50 \times 20=190$ | 9.50 | $\begin{gathered} 9.50 \times 20= \\ 190^{*} \end{gathered}$ | $9.50 \times 2=19.0$ | $19 \times 20=380 * *$ |
| Kolkata Metro | 1.00 | $1.00 \times 20=20$ | $\begin{gathered} 10-1.00= \\ 9.00 \end{gathered}$ | $9.00 \times 20=180$ | 9.00 | $\begin{gathered} 9.00 \times 20= \\ 180^{*} \\ \hline \end{gathered}$ | $9.00 \times 2=18.0$ | $18 \times 20=360 * *$ |
| Visakhapatnam | 1.50 | $1.50 \times 20=30$ | $\begin{gathered} 10-1.50= \\ 8.50 \\ \hline \end{gathered}$ | $8.50 \times 20=170$ | 8.50 | $\begin{gathered} \hline 8.50 \times 20= \\ 170^{*} \\ \hline \end{gathered}$ | $8.50 \times 2=17.0$ | $17 \times 20=340^{* *}$ |
| Khandala | 0.25 | $0.25 \times 20=05$ | $\begin{gathered} 10-0.25= \\ 9.75 \end{gathered}$ | $9.75 \times 20=195$ | 9.75 | $\begin{gathered} 9.75 \times 20= \\ 195^{*} \\ \hline \end{gathered}$ | $9.75 \times 2=19.5$ | $19.5 \times 20=390 * *$ |

* Number of channels can be allocated as per 12.5 KHz ( 2 Voice paths per channel)
** Number of channels can be allocated as per 6.25 KHz

| Ch. No. | 1 |  | 11 |  | 21 |  | 31 |  | 41 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Rx | 818.99375 |  | 818.86875 |  | 818.74375 |  | 818.61875 |  | 818.49375 |  |
| Base Tx | 863.99375 |  | 863.86875 |  | 863.74375 |  | 863.61875 |  | 863.49375 |  |
| Ch. No. | 1a | 1b | 11a | 11b | 21a | 21b | 31a | 31b | 41a | 41b |
| Base Rx | 818.990625 | 818.996875 | 818.865625 | 818.871875 | 818.740625 | 818.746875 | 818.615625 | 818.621875 | 818.490625 | 818.496875 |
| Base Tx | 863.990625 | 863.996875 | 863.865625 | 863.871875 | 863.740625 | 863.746875 | 863.615625 | 863.621875 | 863.490625 | 863.496875 |
| Ch. No. | 2 |  | 12 |  | 22 |  | 32 |  | 42 |  |
| Base Rx | 818.98125 |  | 818.85625 |  | 818.73125 |  | 818.60625 |  | 818.48125 |  |
| Base Tx | 863.98125 |  | 863.85625 |  | 863.73125 |  | 863.60625 |  | 863.48125 |  |
| Ch. No. | 2a | 2b | 12a | 12b | 22a | 22b | 32a | 32b | 42a | 42b |
| Base Rx | 818.978125 | 818.984375 | 818.853125 | 818.859375 | 818.728125 | 818.734375 | 818.603125 | 818.609375 | 818.478125 | 818.484375 |
| Base Tx | 863.978125 | 863.984375 | 863.853125 | 863.859375 | 863.728125 | 863.734375 | 863.603125 | 863.609375 | 863.478125 | 863.484375 |
| Ch. No. | 3 |  | 13 |  | 23 |  | 33 |  | 43 |  |
| Base Rx | 818.96875 |  | 818.84375 |  | 818.71875 |  | 818.59375 |  | 818.46875 |  |
| Base Tx | 863.96875 |  | 863.84375 |  | 863.71875 |  | 863.59375 |  | 863.46875 |  |
| Ch. No. | 3 a | 3b | 13a | 13b | 23a | 23b | 33a | 33b | 43a | 43b |
| Base Rx | 818.965625 | 818.971875 | 818.840625 | 818.846875 | 818.715625 | 818.721875 | 818.590625 | 818.596875 | 818.465625 | 818.471875 |
| Base Tx | 863.965625 | 863.971875 | 863.840625 | 863.846875 | 863.715625 | 863.721875 | 863.590625 | 863.596875 | 863.465625 | 863.471875 |
| Ch. No. | 4 |  | 14 |  | 24 |  | 34 |  | 44 |  |
| Base Rx | 818.95625 |  | 818.83125 |  | 818.70625 |  | 818.58125 |  | 818.45625 |  |
| Base Tx | 863.95625 |  | 863.83125 |  | 863.70625 |  | 863.58125 |  | 863.45625 |  |
| Ch. No. | 4a | 4b | 14a | 14b | 24a | 24b | 34a | 34b | 44a | 44b |
| Base Rx | 818.953125 | 818.959375 | 818.828125 | 818.834375 | 818.703125 | 818.709375 | 818.578125 | 818.584375 | 818.453125 | 818.459375 |
| Base Tx | 863.953125 | 863.959375 | 863.828125 | 863.834375 | 863.703125 | 863.709375 | 863.578125 | 863.584375 | 863.453125 | 863.459375 |
| Ch. No. | 5 |  | 15 |  | 25 |  | 35 |  | 45 |  |
| Base Rx | 818.94375 |  | 818.81875 |  | 818.69375 |  | 818.56875 |  | 818.44375 |  |
| Base Tx | 863.94375 |  | 863.81875 |  | 863.69375 |  | 863.56875 |  | 863.44375 |  |
| Ch. No. | 5a | 5b | 15a | 15b | 25a | 25b | 35a | 35b | 45a | 45b |
| Base Rx | 818.940625 | 818.946875 | 818.815625 | 818.821875 | 818.690625 | 818.696875 | 818.565625 | 818.571875 | 818.440625 | 818.446875 |
| Base Tx | 863.940625 | 863.946875 | 863.815625 | 863.821875 | 863.690625 | 863.696875 | 863.565625 | 863.571875 | 863.440625 | 863.446875 |
| Ch. No. | 6 |  | 16 |  | 26 |  | 36 |  | 46 |  |
| Base Rx | 818.93125 |  | 818.80625 |  | 818.68125 |  | 818.55625 |  | 818.43125 |  |
| Base Tx | 863.93125 |  | 863.80625 |  | 863.68125 |  | 863.55625 |  | 863.43125 |  |
| Ch. No. | 6a | 6b | 16a | 16b | 26a | 26b | 36a | 36b | 46a | 46b |
| Base Rx | 818.928125 | 818.934375 | 818.803125 | 818.809375 | 818.678125 | 818.684375 | 818.553125 | 818.559375 | 818.428125 | 818.434375 |
| Base Tx | 863.928125 | 863.934375 | 863.803125 | 863.809375 | 863.678125 | 863.684375 | 863.553125 | 863.559375 | 863.428125 | 863.434375 |
| Ch. No. | 7 |  | 17 |  | 27 |  | 37 |  | 47 |  |
| Base Rx | 818.91875 |  | 818.79375 |  | 818.66875 |  | 818.54375 |  | 818.41875 |  |
| Base Tx | 863.91875 |  | 863.79375 |  | 863.66875 |  | 863.54375 |  | 863.41875 |  |
| Ch. No. | 7 a | 7 b | 17a | 17b | 27a | 27b | 37a | 37b | 47a | 47b |
| Base Rx | 818.915625 | 818.921875 | 818.790625 | 818.796875 | 818.665625 | 818.671875 | 818.540625 | 818.546875 | 818.415625 | 818.421875 |
| Base Tx | 863.915625 | 863.921875 | 863.790625 | 863.796875 | 863.665625 | 863.671875 | 863.540625 | 863.546875 | 863.415625 | 863.421875 |
| Ch. No. | 8 |  | 18 |  | 28 |  | 38 |  | 48 |  |
| Base Rx | 818.90625 |  | 818.78125 |  | 818.65625 |  | 818.53125 |  | 818.40625 |  |
| Base Tx | 863.90625 |  | 863.78125 |  | 863.65625 |  | 863.53125 |  | 863.40625 |  |
| Ch. No. | 8 a | 8 b | 18a | 18b | 28a | 28b | 38a | 38b | 48a | 48b |
| Base Rx | 818.903125 | 818.909375 | 818.778125 | 818.784375 | 818.653125 | 818.659375 | 818.528125 | 818.534375 | 818.403125 | 818.409375 |
| Base Tx | 863.903125 | 863.909375 | 863.778125 | 863.784375 | 863.653125 | 863.659375 | 863.528125 | 863.534375 | 863.403125 | 863.409375 |
| Ch. No. | 9 |  | 19 |  | 29 |  | 39 |  | 49 |  |
| Base Rx | 818.89375 |  | 818.76875 |  | 818.64375 |  | 818.51875 |  | 818.39375 |  |
| Base Tx | 863.89375 |  | 863.76875 |  | 863.64375 |  | 863.51875 |  | 863.39375 |  |
| Ch. No. | 9 a | 9b | 19a | 19b | 29a | 29b | 39a | 39b | 49a | 49b |
| Base Rx | 818.890625 | 818.896875 | 818.765625 | 818.771875 | 818.640625 | 818.646875 | 818.515625 | 818.521875 | 818.390625 | 818.396875 |
| Base Tx | 863.890625 | 863.896875 | 863.765625 | 863.771875 | 863.640625 | 863.646875 | 863.515625 | 863.521875 | 863.390625 | 863.396875 |
| Ch. No. | 10 |  | 20 |  | 30 |  | 40 |  | 50 |  |
| Base Rx | 818.88125 |  | 818.75625 |  | 818.63125 |  | 818.50625 |  | 818.38125 |  |
| Base Tx | 863.88125 |  | 863.75625 |  | 863.63125 |  | 863.50625 |  | 863.38125 |  |
| Ch. No. | 10a | 10b | 20a | 20b | 30a | 30b | 40a | 40b | 50a | 50b |
| Base Rx | 818.878125 | 818.884375 | 818.753125 | 818.759375 | 818.628125 | 818.634375 | 818.503125 | 818.509375 | 818.378125 | 818.384375 |
| Base Tx | 863.878125 | 863.884375 | 863.753125 | 863.759375 | 863.628125 | 863.634375 | 863.503125 | 863.509375 | 863.378125 | 863.384375 |


| Ch. No. | 51 |  | 61 |  | 71 |  | 81 |  | 91 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Rx | 818.36875 |  | 818.24375 |  | 818.11875 |  | 817.99375 |  | 817.86875 |  |
| Base Tx | 863.36875 |  | 863.24375 |  | 863.11875 |  | 862.99375 |  | 862.86875 |  |
| Ch. No. | 51a | 51b | 61a | 61b | 71a | 71b | 81a | 81b | 91a | 91b |
| Base Rx | 818.365625 | 818.371875 | 818.240625 | 818.246875 | 818.115625 | 818.121875 | 817.990625 | 817.996875 | 817.865625 | 817.871875 |
| Base Tx | 863.365625 | 863.371875 | 863.240625 | 863.246875 | 863.115625 | 863.121875 | 862.990625 | 862.996875 | 862.865625 | 862.871875 |
| Ch. No. | 52 |  | 62 |  | 72 |  | 82 |  | 92 |  |
| Base Rx | 818.35625 |  | 818.23125 |  | 818.10625 |  | 817.98125 |  | 817.85625 |  |
| Base Tx | 863.35625 |  | 863.23125 |  | 863.10625 |  | 862.98125 |  | 862.85625 |  |
| Ch. No. | 52a | 52b | 62a | 62b | 72a | 72b | 82a | 82b | 92a | 92b |
| Base Rx | 818.353125 | 818.359375 | 818.228125 | 818.234375 | 818.103125 | 818.109375 | 817.978125 | 817.984375 | 817.853125 | 817.859375 |
| Base Tx | 863.353125 | 863.359375 | 863.228125 | 863.234375 | 863.103125 | 863.109375 | 862.978125 | 862.984375 | 862.853125 | 862.859375 |
| Ch. No. | 53 |  | 63 |  | 73 |  | 83 |  | 93 |  |
| Base Rx | 818.34375 |  | 818.21875 |  | 818.09375 |  | 817.96875 |  | 817.84375 |  |
| Base Tx | 863.34375 |  | 863.21875 |  | 863.09375 |  | 862.96875 |  | 862.84375 |  |
| Ch. No. | 53a | 53b | 63a | 63b | 73a | 73b | 83a | 83b | 93a | 93b |
| Base Rx | 818.340625 | 818.346875 | 818.215625 | 818.221875 | 818.090625 | 818.096875 | 817.965625 | 817.971875 | 817.840625 | 817.846875 |
| Base Tx | 863.340625 | 863.346875 | 863.215625 | 863.221875 | 863.090625 | 863.096875 | 862.965625 | 862.971875 | 862.840625 | 862.846875 |
| Ch. No. | 54 |  | 64 |  | 74 |  | 84 |  | 94 |  |
| Base Rx | 818.33125 |  | 818.20625 |  | 818.08125 |  | 817.95625 |  | 817.83125 |  |
| Base Tx | 863.33125 |  | 863.20625 |  | 863.08125 |  | 862.95625 |  | 862.83125 |  |
| Ch. No. | 54a | 54b | 64a | 64b | 74a | 74b | 84a | 84b | 94a | 94b |
| Base Rx | 818.328125 | 818.334375 | 818.203125 | 818.209375 | 818.078125 | 818.084375 | 817.953125 | 817.959375 | 817.828125 | 817.834375 |
| Base Tx | 863.328125 | 863.334375 | 863.203125 | 863.209375 | 863.078125 | 863.084375 | 862.953125 | 862.959375 | 862.828125 | 862.834375 |
| Ch. No. | 55 |  | 65 |  | 75 |  | 85 |  | 95 |  |
| Base Rx | 818.31875 |  | 818.19375 |  | 818.06875 |  | 817.94375 |  | 817.81875 |  |
| Base Tx | 863.31875 |  | 863.19375 |  | 863.06875 |  | 862.94375 |  | 862.81875 |  |
| Ch. No. | 55a | 55b | 65a | 65b | 75a | 75b | 85a | 85b | 95a | 95b |
| Base Rx | 818.315625 | 818.321875 | 818.190625 | 818.196875 | 818.065625 | 818.071875 | 817.940625 | 817.946875 | 817.815625 | 817.821875 |
| Base Tx | 863.315625 | 863.321875 | 863.190625 | 863.196875 | 863.065625 | 863.071875 | 862.940625 | 862.946875 | 862.815625 | 862.821875 |
| Ch. No. | 56 |  | 66 |  | 76 |  | 86 |  | 96 |  |
| Base Rx | 818.30625 |  | 818.18125 |  | 818.05625 |  | 817.93125 |  | 817.80625 |  |
| Base Tx | 863.30625 |  | 863.18125 |  | 863.05625 |  | 862.93125 |  | 862.80625 |  |
| Ch. No. | 56a | 56b | 66a | 66b | 76a | 76b | 86a | 86b | 96a | 96b |
| Base Rx | 818.303125 | 818.309375 | 818.178125 | 818.184375 | 818.053125 | 818.059375 | 817.928125 | 817.934375 | 817.803125 | 817.809375 |
| Base Tx | 863.303125 | 863.309375 | 863.178125 | 863.184375 | 863.053125 | 863.059375 | 862.928125 | 862.934375 | 862.803125 | 862.809375 |
| Ch. No. | 57 |  | 67 |  | 77 |  | 87 |  | 97 |  |
| Base Rx | 818.29375 |  | 818.16875 |  | 818.04375 |  | 817.91875 |  | 817.79375 |  |
| Base Tx | 863.29375 |  | 863.16875 |  | 863.04375 |  | 862.91875 |  | 862.79375 |  |
| Ch. No. | 57a | 57b | 67a | 67b | 77a | 77b | 87a | 87b | 97a | 97b |
| Base Rx | 818.290625 | 818.296875 | 818.165625 | 818.171875 | 818.040625 | 818.046875 | 817.915625 | 817.921875 | 817.790625 | 817.796875 |
| Base Tx | 863.290625 | 863.296875 | 863.165625 | 863.171875 | 863.040625 | 863.046875 | 862.915625 | 862.921875 | 862.790625 | 862.796875 |
| Ch. No. | 58 |  | 68 |  | 78 |  | 88 |  | 98 |  |
| Base Rx | 818.28125 |  | 818.15625 |  | 818.03125 |  | 817.90625 |  | 817.78125 |  |
| Base Tx | 863.28125 |  | 863.15625 |  | 863.03125 |  | 862.90625 |  | 862.78125 |  |
| Ch. No. | 58a | 58b | 68a | 68b | 78a | 78b | 88a | 88b | 98a | 98b |
| Base Rx | 818.278125 | 818.284375 | 818.153125 | 818.159375 | 818.028125 | 818.034375 | 817.903125 | 817.909375 | 817.778125 | 817.784375 |
| Base Tx | 863.278125 | 863.284375 | 863.153125 | 863.159375 | 863.028125 | 863.034375 | 862.903125 | 862.909375 | 862.778125 | 862.784375 |
| Ch. No. | 59 |  | 69 |  | 79 |  | 89 |  | 99 |  |
| Base Rx | 818.26875 |  | 818.14375 |  | 818.01875 |  | 817.89375 |  | 817.76875 |  |
| Base Tx | 863.26875 |  | 863.14375 |  | 863.01875 |  | 862.89375 |  | 862.76875 |  |
| Ch. No. | 59a | 59b | 69a | 69b | 79a | 79b | 89a | 89b | 99a | 99b |
| Base Rx | 818.265625 | 818.271875 | 818.140625 | 818.146875 | 818.015625 | 818.021875 | 817.890625 | 817.896875 | 817.765625 | 817.771875 |
| Base Tx | 863.265625 | 863.271875 | 863.140625 | 863.146875 | 863.015625 | 863.021875 | 862.890625 | 862.896875 | 862.765625 | 862.771875 |
| Ch. No. | 60 |  | 70 |  | 80 |  | 90 |  | 100 |  |
| Base Rx | 818.25625 |  | 818.13125 |  | 818.00625 |  | 817.88125 |  | 817.75625 |  |
| Base Tx | 863.25625 |  | 863.13125 |  | 863.00625 |  | 862.88125 |  | 862.75625 |  |
| Ch. No. | 60a | 60b | 70a | 70b | 80a | 80b | 90a | 90b | 100a | 100b |
| Base Rx | 818.253125 | 818.259375 | 818.128125 | 818.134375 | 818.003125 | 818.009375 | 817.878125 | 817.884375 | 817.753125 | 817.759375 |
| Base Tx | 863.253125 | 863.259375 | 863.128125 | 863.134375 | 863.003125 | 863.009375 | 862.878125 | 862.884375 | 862.753125 | 862.759375 |


| Ch. No. | 101 |  | 111 |  | 121 |  | 131 |  | 141 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Rx | 817.74375 |  | 817.61875 |  | 817.49375 |  | 817.36875 |  | 817.24375 |  |
| Base Tx | 862.74375 |  | 862.61875 |  | 862.49375 |  | 862.36875 |  | 862.24375 |  |
| Ch. No. | 101a | 101b | 111a | 111b | 121a | 121b | 131a | 131b | 141a | 141b |
| Base Rx | 817.740625 | 817.746875 | 817.615625 | 817.621875 | 817.490625 | 817.496875 | 817.365625 | 817.371875 | 817.240625 | 817.246875 |
| Base Tx | 862.740625 | 862.746875 | 862.615625 | 862.621875 | 862.490625 | 862.496875 | 862.365625 | 862.371875 | 862.240625 | 862.246875 |
| Ch. No. | 102 |  | 112 |  | 122 |  | 132 |  | 142 |  |
| Base Rx | 817.73125 |  | 817.60625 |  | 817.48125 |  | 817.35625 |  | 817.23125 |  |
| Base Tx | 862.73125 |  | 862.60625 |  | 862.48125 |  | 862.35625 |  | 862.23125 |  |
| Ch. No. | 102a | 102b | 112a | 112b | 122a | 122b | 132a | 132b | 142a | 142b |
| Base Rx | 817.728125 | 817.734375 | 817.603125 | 817.609375 | 817.478125 | 817.484375 | 817.353125 | 817.359375 | 817.228125 | 817.234375 |
| Base Tx | 862.728125 | 862.734375 | 862.603125 | 862.609375 | 862.478125 | 862.484375 | 862.353125 | 862.359375 | 862.228125 | 862.234375 |
| Ch. No. | 103 |  | 113 |  | 123 |  | 133 |  | 143 |  |
| Base Rx | 817.71875 |  | 817.59375 |  | 817.46875 |  | 817.34375 |  | 817.21875 |  |
| Base Tx | 862.71875 |  | 862.59375 |  | 862.46875 |  | 862.34375 |  | 862.21875 |  |
| Ch. No. | 103a | 103b | 113a | 113b | 123a | 123b | 133a | 133b | 143a | 143b |
| Base Rx | 817.715625 | 817.721875 | 817.590625 | 817.596875 | 817.465625 | 817.471875 | 817.340625 | 817.346875 | 817.215625 | 817.221875 |
| Base Tx | 862.715625 | 862.721875 | 862.590625 | 862.596875 | 862.465625 | 862.471875 | 862.340625 | 862.346875 | 862.215625 | 862.221875 |
| Ch. No. | 104 |  | 114 |  | 124 |  | 134 |  | 144 |  |
| Base Rx | 817.70625 |  | 817.58125 |  | 817.45625 |  | 817.33125 |  | 817.20625 |  |
| Base Tx | 862.70625 |  | 862.58125 |  | 862.45625 |  | 862.33125 |  | 862.20625 |  |
| Ch. No. | 104a | 104b | 114a | 114b | 124a | 124b | 134a | 134b | 144a | 144b |
| Base Rx | 817.703125 | 817.709375 | 817.578125 | 817.584375 | 817.453125 | 817.459375 | 817.328125 | 817.334375 | 817.203125 | 817.209375 |
| Base Tx | 862.703125 | 862.709375 | 862.578125 | 862.584375 | 862.453125 | 862.459375 | 862.328125 | 862.334375 | 862.203125 | 862.209375 |
| Ch. No. | 105 |  | 115 |  | 125 |  | 135 |  | 145 |  |
| Base Rx | 817.69375 |  | 817.56875 |  | 817.44375 |  | 817.31875 |  | 817.19375 |  |
| Base Tx | 862.69375 |  | 862.56875 |  | 862.44375 |  | 862.31875 |  | 862.19375 |  |
| Ch. No. | 105a | 105b | 115a | 115b | 125a | 125b | 135a | 135b | 145a | 145b |
| Base Rx | 817.690625 | 817.696875 | 817.565625 | 817.571875 | 817.440625 | 817.446875 | 817.315625 | 817.321875 | 817.190625 | 817.196875 |
| Base Tx | 862.690625 | 862.696875 | 862.565625 | 862.571875 | 862.440625 | 862.446875 | 862.315625 | 862.321875 | 862.190625 | 862.196875 |
| Ch. No. | 106 |  | 116 |  | 126 |  | 136 |  | 146 |  |
| Base Rx | 817.68125 |  | 817.55625 |  | 817.43125 |  | 817.30625 |  | 817.18125 |  |
| Base Tx | 862.68125 |  | 862.55625 |  | 862.43125 |  | 862.30625 |  | 862.18125 |  |
| Ch. No. | 106a | 106b | 116a | 116b | 126a | 126b | 136a | 136b | 146a | 146b |
| Base Rx | 817.678125 | 817.684375 | 817.553125 | 817.559375 | 817.428125 | 817.434375 | 817.303125 | 817.309375 | 817.178125 | 817.184375 |
| Base Tx | 862.678125 | 862.684375 | 862.553125 | 862.559375 | 862.428125 | 862.434375 | 862.303125 | 862.309375 | 862.178125 | 862.184375 |
| Ch. No. | 107 |  | 117 |  | 127 |  | 137 |  | 147 |  |
| Base Rx | 817.66875 |  | 817.54375 |  | 817.41875 |  | 817.29375 |  | 817.16875 |  |
| Base Tx | 862.66875 |  | 862.54375 |  | 862.41875 |  | 862.29375 |  | 862.16875 |  |
| Ch. No. | 107a | 107b | 117a | 117b | 127a | 127b | 137a | 137b | 147a | 147b |
| Base Rx | 817.665625 | 817.671875 | 817.540625 | 817.546875 | 817.415625 | 817.421875 | 817.290625 | 817.296875 | 817.165625 | 817.171875 |
| Base Tx | 862.665625 | 862.671875 | 862.540625 | 862.546875 | 862.415625 | 862.421875 | 862.290625 | 862.296875 | 862.165625 | 862.171875 |
| Ch. No. | 108 |  | 118 |  | 128 |  | 138 |  | 148 |  |
| Base Rx | 817.65625 |  | 817.53125 |  | 817.40625 |  | 817.28125 |  | 817.15625 |  |
| Base Tx | 862.65625 |  | 862.53125 |  | 862.40625 |  | 862.28125 |  | 862.15625 |  |
| Ch. No. | 108a | 108b | 118a | 118b | 128a | 128b | 138a | 138b | 148a | 148b |
| Base Rx | 817.653125 | 817.659375 | 817.528125 | 817.534375 | 817.403125 | 817.409375 | 817.278125 | 817.284375 | 817.153125 | 817.159375 |
| Base Tx | 862.653125 | 862.659375 | 862.528125 | 862.534375 | 862.403125 | 862.409375 | 862.278125 | 862.284375 | 862.153125 | 862.159375 |
| Ch. No. | 109 |  | 119 |  | 129 |  | 139 |  | 149 |  |
| Base Rx | 817.64375 |  | 817.51875 |  | 817.39375 |  | 817.26875 |  | 817.14375 |  |
| Base Tx | 862.64375 |  | 862.51875 |  | 862.39375 |  | 862.26875 |  | 862.14375 |  |
| Ch. No. | 109a | 109b | 119a | 119b | 129a | 129b | 139a | 139b | 149a | 149b |
| Base Rx | 817.640625 | 817.646875 | 817.515625 | 817.521875 | 817.390625 | 817.396875 | 817.265625 | 817.271875 | 817.140625 | 817.146875 |
| Base Tx | 862.640625 | 862.646875 | 862.515625 | 862.521875 | 862.390625 | 862.396875 | 862.265625 | 862.271875 | 862.140625 | 862.146875 |
| Ch. No. | 110 |  | 120 |  | 130 |  | 140 |  | 150 |  |
| Base Rx | 817.63125 |  | 817.50625 |  | 817.38125 |  | 817.25625 |  | 817.13125 |  |
| Base Tx | 862.63125 |  | 862.50625 |  | 862.38125 |  | 862.25625 |  | 862.13125 |  |
| Ch. No. | 110a | 110b | 120a | 120b | 130a | 130b | 140a | 140b | 150a | 150b |
| Base Rx | 817.628125 | 817.634375 | 817.503125 | 817.509375 | 817.378125 | 817.384375 | 817.253125 | 817.259375 | 817.128125 | 817.134375 |
| Base Tx | 862.628125 | 862.634375 | 862.503125 | 862.509375 | 862.378125 | 862.384375 | 862.253125 | 862.259375 | 862.128125 | 862.134375 |


| Ch. No. | 151 |  | 161 |  | 171 |  | 181 |  | 191 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Rx | 817.11875 |  | 816.99375 |  | 816.86875 |  | 816.74375 |  | 816.61875 |  |
| Base Tx | 862.11875 |  | 861.99375 |  | 861.86875 |  | 861.74375 |  | 861.61875 |  |
| Ch. No. | 151a | 151b | 161a | 161b | 171a | 171b | 181a | 181b | 191a | 191b |
| Base Rx | 817.115625 | 817.121875 | 816.990625 | 816.996875 | 816.865625 | 816.871875 | 816.740625 | 816.746875 | 816.615625 | 816.621875 |
| Base Tx | 862.115625 | 862.121875 | 861.990625 | 861.996875 | 861.865625 | 861.871875 | 861.740625 | 861.746875 | 861.615625 | 861.621875 |
| Ch. No. | 152 |  | 162 |  | 172 |  | 182 |  | 192 |  |
| Base Rx | 817.10625 |  | 816.98125 |  | 816.85625 |  | 816.73125 |  | 816.60625 |  |
| Base Tx | 862.10625 |  | 861.98125 |  | 861.85625 |  | 861.73125 |  | 861.60625 |  |
| Ch. No. | 152a | 152b | 162a | 162b | 172a | 172b | 182a | 182b | 192a | 192b |
| Base Rx | 817.103125 | 817.109375 | 816.978125 | 816.984375 | 816.853125 | 816.859375 | 816.728125 | 816.734375 | 816.603125 | 816.609375 |
| Base Tx | 862.103125 | 862.109375 | 861.978125 | 861.984375 | 861.853125 | 861.859375 | 861.728125 | 861.734375 | 861.603125 | 861.609375 |
| Ch. No. | 153 |  | 163 |  | 173 |  | 183 |  | 193 |  |
| Base Rx | 817.09375 |  | 816.96875 |  | 816.84375 |  | 816.71875 |  | 816.59375 |  |
| Base Tx | 862.09375 |  | 861.96875 |  | 861.84375 |  | 861.71875 |  | 861.59375 |  |
| Ch. No. | 153a | 153b | 163a | 163b | 173a | 173b | 183a | 183b | 193a | 193b |
| Base Rx | 817.090625 | 817.096875 | 816.965625 | 816.971875 | 816.840625 | 816.846875 | 816.715625 | 816.721875 | 816.590625 | 816.596875 |
| Base Tx | 862.090625 | 862.096875 | 861.965625 | 861.971875 | 861.840625 | 861.846875 | 861.715625 | 861.721875 | 861.590625 | 861.596875 |
| Ch. No. | 154 |  | 164 |  | 174 |  | 184 |  | 194 |  |
| Base Rx | 817.08125 |  | 816.95625 |  | 816.83125 |  | 816.70625 |  | 816.58125 |  |
| Base Tx | 862.08125 |  | 861.95625 |  | 861.83125 |  | 861.70625 |  | 861.58125 |  |
| Ch. No. | 154a | 154b | 164a | 164b | 174a | 174b | 184a | 184b | 194a | 194b |
| Base Rx | 817.078125 | 817.084375 | 816.953125 | 816.959375 | 816.828125 | 816.834375 | 816.703125 | 816.709375 | 816.578125 | 816.584375 |
| Base Tx | 862.078125 | 862.084375 | 861.953125 | 861.959375 | 861.828125 | 861.834375 | 861.703125 | 861.709375 | 861.578125 | 861.584375 |
| Ch. No. | 155 |  | 165 |  | 175 |  | 185 |  | 195 |  |
| Base Rx | 817.06875 |  | 816.94375 |  | 816.81875 |  | 816.69375 |  | 816.56875 |  |
| Base Tx | 862.06875 |  | 861.94375 |  | 861.81875 |  | 861.69375 |  | 861.56875 |  |
| Ch. No. | 155a | 155b | 165a | 165b | 175a | 175b | 185a | 185b | 195a | 195b |
| Base Rx | 817.065625 | 817.071875 | 816.940625 | 816.946875 | 816.815625 | 816.821875 | 816.690625 | 816.696875 | 816.565625 | 816.571875 |
| Base Tx | 862.065625 | 862.071875 | 861.940625 | 861.946875 | 861.815625 | 861.821875 | 861.690625 | 861.696875 | 861.565625 | 861.571875 |
| Ch. No. | 156 |  | 166 |  | 176 |  | 186 |  | 196 |  |
| Base Rx | 817.05625 |  | 816.93125 |  | 816.80625 |  | 816.68125 |  | 816.55625 |  |
| Base Tx | 862.05625 |  | 861.93125 |  | 861.80625 |  | 861.68125 |  | 861.55625 |  |
| Ch. No. | 156a | 156b | 166a | 166b | 176a | 176b | 186a | 186b | 196a | 196b |
| Base Rx | 817.053125 | 817.059375 | 816.928125 | 816.934375 | 816.803125 | 816.809375 | 816.678125 | 816.684375 | 816.553125 | 816.559375 |
| Base Tx | 862.053125 | 862.059375 | 861.928125 | 861.934375 | 861.803125 | 861.809375 | 861.678125 | 861.684375 | 861.553125 | 861.559375 |
| Ch. No. | 157 |  | 167 |  | 177 |  | 187 |  | 197 |  |
| Base Rx | 817.04375 |  | 816.91875 |  | 816.79375 |  | 816.66875 |  | 816.54375 |  |
| Base Tx | 862.04375 |  | 861.91875 |  | 861.79375 |  | 861.66875 |  | 861.54375 |  |
| Ch. No. | 157a | 157b | 167a | 167b | 177a | 177b | 187a | 187b | 197a | 197b |
| Base Rx | 817.040625 | 817.046875 | 816.915625 | 816.921875 | 816.790625 | 816.796875 | 816.665625 | 816.671875 | 816.540625 | 816.546875 |
| Base Tx | 862.040625 | 862.046875 | 861.915625 | 861.921875 | 861.790625 | 861.796875 | 861.665625 | 861.671875 | 861.540625 | 861.546875 |
| Ch. No. | 158 |  | 168 |  | 178 |  | 188 |  | 198 |  |
| Base Rx | 817.03125 |  | 816.90625 |  | 816.78125 |  | 816.65625 |  | 816.53125 |  |
| Base Tx | 862.03125 |  | 861.90625 |  | 861.78125 |  | 861.65625 |  | 861.53125 |  |
| Ch. No. | 158a | 158b | 168a | 168b | 178a | 178b | 188a | 188b | 198a | 198b |
| Base Rx | 817.028125 | 817.034375 | 816.903125 | 816.909375 | 816.778125 | 816.784375 | 816.653125 | 816.659375 | 816.528125 | 816.534375 |
| Base Tx | 862.028125 | 862.034375 | 861.903125 | 861.909375 | 861.778125 | 861.784375 | 861.653125 | 861.659375 | 861.528125 | 861.534375 |
| Ch. No. | 159 |  | 169 |  | 179 |  | 189 |  | 199 |  |
| Base Rx | 817.01875 |  | 816.89375 |  | 816.76875 |  | 816.64375 |  | 816.51875 |  |
| Base Tx | 862.01875 |  | 861.89375 |  | 861.76875 |  | 861.64375 |  | 861.51875 |  |
| Ch. No. | 159a | 159b | 169a | 169b | 179a | 179b | 189a | 189b | 199a | 199b |
| Base Rx | 817.015625 | 817.021875 | 816.890625 | 816.896875 | 816.765625 | 816.771875 | 816.640625 | 816.646875 | 816.515625 | 816.521875 |
| Base Tx | 862.015625 | 862.021875 | 861.890625 | 861.896875 | 861.765625 | 861.771875 | 861.640625 | 861.646875 | 861.515625 | 861.521875 |
| Ch. No. | 160 |  | 170 |  | 180 |  | 190 |  | 200 |  |
| Base Rx | 817.00625 |  | 816.88125 |  | 816.75625 |  | 816.63125 |  | 816.50625 |  |
| Base Tx | 862.00625 |  | 861.88125 |  | 861.75625 |  | 861.63125 |  | 861.50625 |  |
| Ch. No. | 160a | 160b | 170a | 170b | 180a | 180b | 190a | 190b | 200a | 200b |
| Base Rx | 817.003125 | 817.009375 | 816.878125 | 816.884375 | 816.753125 | 816.759375 | 816.628125 | 816.634375 | 816.503125 | 816.509375 |
| Base Tx | 862.003125 | 862.009375 | 861.878125 | 861.884375 | 861.753125 | 861.759375 | 861.628125 | 861.634375 | 861.503125 | 861.509375 |


| Ch. No. | 201 |  | 211 |  | 221 |  | 231 |  | 241 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Rx | 816.49375 |  | 816.36875 |  | 816.24375 |  | 816.11875 |  | 815.99375 |  |
| Base Tx | 861.49375 |  | 861.36875 |  | 861.24375 |  | 861.11875 |  | 860.99375 |  |
| Ch. No. | 201a | 201b | 211a | 211b | 221a | 221b | 231a | 231b | 241a | 241b |
| Base Rx | 816.490625 | 816.496875 | 816.365625 | 816.371875 | 816.240625 | 816.246875 | 816.115625 | 816.121875 | 815.990625 | 815.996875 |
| Base Tx | 861.490625 | 861.496875 | 861.365625 | 861.371875 | 861.240625 | 861.246875 | 861.115625 | 861.121875 | 860.990625 | 860.996875 |
| Ch. No. | 202 |  | 212 |  | 222 |  | 232 |  | 242 |  |
| Base Rx | 816.48125 |  | 816.35625 |  | 816.23125 |  | 816.10625 |  | 815.98125 |  |
| Base Tx | 861.48125 |  | 861.35625 |  | 861.23125 |  | 861.10625 |  | 860.98125 |  |
| Ch. No. | 202a | 202b | 212a | 212b | 222a | 222b | 232a | 232b | 242a | 242b |
| Base Rx | 816.478125 | 816.484375 | 816.353125 | 816.359375 | 816.228125 | 816.234375 | 816.103125 | 816.109375 | 815.978125 | 815.984375 |
| Base Tx | 861.478125 | 861.484375 | 861.353125 | 861.359375 | 861.228125 | 861.234375 | 861.103125 | 861.109375 | 860.978125 | 860.984375 |
| Ch. No. | 203 |  | 213 |  | 223 |  | 233 |  | 243 |  |
| Base Rx | 816.46875 |  | 816.34375 |  | 816.21875 |  | 816.09375 |  | 815.96875 |  |
| Base Tx | 861.46875 |  | 861.34375 |  | 861.21875 |  | 861.09375 |  | 860.96875 |  |
| Ch. No. | 203a | 203b | 213a | 213b | 223a | 223b | 233a | 233b | 243a | 243b |
| Base Rx | 816.465625 | 816.471875 | 816.340625 | 816.346875 | 816.215625 | 816.221875 | 816.090625 | 816.096875 | 815.965625 | 815.971875 |
| Base Tx | 861.465625 | 861.471875 | 861.340625 | 861.346875 | 861.215625 | 861.221875 | 861.090625 | 861.096875 | 860.965625 | 860.971875 |
| Ch. No. | 204 |  | 214 |  | 224 |  | 234 |  | 244 |  |
| Base Rx | 816.45625 |  | 816.33125 |  | 816.20625 |  | 816.08125 |  | 815.95625 |  |
| Base Tx | 861.45625 |  | 861.33125 |  | 861.20625 |  | 861.08125 |  | 860.95625 |  |
| Ch. No. | 204a | 204b | 214a | 214b | 224a | 224b | 234a | 234b | 244a | 244b |
| Base Rx | 816.453125 | 816.459375 | 816.328125 | 816.334375 | 816.203125 | 816.209375 | 816.078125 | 816.084375 | 815.953125 | 815.959375 |
| Base Tx | 861.453125 | 861.459375 | 861.328125 | 861.334375 | 861.203125 | 861.209375 | 861.078125 | 861.084375 | 860.953125 | 860.959375 |
| Ch. No. | 205 |  | 215 |  | 225 |  | 235 |  | 245 |  |
| Base Rx | 816.44375 |  | 816.31875 |  | 816.19375 |  | 816.06875 |  | 815.94375 |  |
| Base Tx | 861.44375 |  | 861.31875 |  | 861.19375 |  | 861.06875 |  | 860.94375 |  |
| Ch. No. | 205a | 205b | 215a | 215b | 225a | 225b | 235a | 235b | 245a | 245b |
| Base Rx | 816.440625 | 816.446875 | 816.315625 | 816.321875 | 816.190625 | 816.196875 | 816.065625 | 816.071875 | 815.940625 | 815.946875 |
| Base Tx | 861.440625 | 861.446875 | 861.315625 | 861.321875 | 861.190625 | 861.196875 | 861.065625 | 861.071875 | 860.940625 | 860.946875 |
| Ch. No. | 206 |  | 216 |  | 226 |  | 236 |  | 246 |  |
| Base Rx | 816.43125 |  | 816.30625 |  | 816.18125 |  | 816.05625 |  | 815.93125 |  |
| Base Tx | 861.43125 |  | 861.30625 |  | 861.18125 |  | 861.05625 |  | 860.93125 |  |
| Ch. No. | 206a | 206b | 216a | 216b | 226a | 226b | 236a | 236b | 246a | 246b |
| Base Rx | 816.428125 | 816.434375 | 816.303125 | 816.309375 | 816.178125 | 816.184375 | 816.053125 | 816.059375 | 815.928125 | 815.934375 |
| Base Tx | 861.428125 | 861.434375 | 861.303125 | 861.309375 | 861.178125 | 861.184375 | 861.053125 | 861.059375 | 860.928125 | 860.934375 |
| Ch. No. | 207 |  | 217 |  | 227 |  | 237 |  | 247 |  |
| Base Rx | 816.41875 |  | 816.29375 |  | 816.16875 |  | 816.04375 |  | 815.91875 |  |
| Base Tx | 861.41875 |  | 861.29375 |  | 861.16875 |  | 861.04375 |  | 860.91875 |  |
| Ch. No. | 207a | 207b | 217a | 217b | 227a | 227b | 237a | 237b | 247a | 247b |
| Base Rx | 816.415625 | 816.421875 | 816.290625 | 816.296875 | 816.165625 | 816.171875 | 816.040625 | 816.046875 | 815.915625 | 815.921875 |
| Base Tx | 861.415625 | 861.421875 | 861.290625 | 861.296875 | 861.165625 | 861.171875 | 861.040625 | 861.046875 | 860.915625 | 860.921875 |
| Ch. No. | 208 |  | 218 |  | 228 |  | 238 |  | 248 |  |
| Base Rx | 816.40625 |  | 816.28125 |  | 816.15625 |  | 816.03125 |  | 815.90625 |  |
| Base Tx | 861.40625 |  | 861.28125 |  | 861.15625 |  | 861.03125 |  | 860.90625 |  |
| Ch. No. | 208a | 208b | 218a | 218b | 228a | 228b | 238a | 238b | 248a | 248b |
| Base Rx | 816.403125 | 816.409375 | 816.278125 | 816.284375 | 816.153125 | 816.159375 | 816.028125 | 816.034375 | 815.903125 | 815.909375 |
| Base Tx | 861.403125 | 861.409375 | 861.278125 | 861.284375 | 861.153125 | 861.159375 | 861.028125 | 861.034375 | 860.903125 | 860.909375 |
| Ch. No. | 209 |  | 219 |  | 229 |  | 239 |  | 249 |  |
| Base Rx | 816.39375 |  | 816.26875 |  | 816.14375 |  | 816.01875 |  | 815.89375 |  |
| Base Tx | 861.39375 |  | 861.26875 |  | 861.14375 |  | 861.01875 |  | 860.89375 |  |
| Ch. No. | 209a | 209b | 219a | 219b | 229a | 229b | 239a | 239b | 249a | 249b |
| Base Rx | 816.390625 | 816.396875 | 816.265625 | 816.271875 | 816.140625 | 816.146875 | 816.015625 | 816.021875 | 815.890625 | 815.896875 |
| Base Tx | 861.390625 | 861.396875 | 861.265625 | 861.271875 | 861.140625 | 861.146875 | 861.015625 | 861.021875 | 860.890625 | 860.896875 |
| Ch. No. | 210 |  | 220 |  | 230 |  | 240 |  | 250 |  |
| Base Rx | 816.38125 |  | 816.25625 |  | 816.13125 |  | 816.00625 |  | 815.88125 |  |
| Base Tx | 861.38125 |  | 861.25625 |  | 861.13125 |  | 861.00625 |  | 860.88125 |  |
| Ch. No. | 210a | 210b | 220a | 220b | 230a | 230b | 240a | 240b | 250a | 250b |
| Base Rx | 816.378125 | 816.384375 | 816.253125 | 816.259375 | 816.128125 | 816.134375 | 816.003125 | 816.009375 | 815.878125 | 815.884375 |
| Base Tx | 861.378125 | 861.384375 | 861.253125 | 861.259375 | 861.128125 | 861.134375 | 861.003125 | 861.009375 | 860.878125 | 860.884375 |


| Ch. No. | 251 |  | 261 |  | 271 |  | 281 |  | 291 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Rx | 815.86875 |  | 815.74375 |  | 815.61875 |  | 815.49375 |  | 815.36875 |  |
| Base Tx | 860.86875 |  | 860.74375 |  | 860.61875 |  | 860.49375 |  | 860.36875 |  |
| Ch. No. | 251a | 251b | 261a | 261b | 271a | 271b | 281a | 281b | 291a | 291b |
| Base Rx | 815.865625 | 815.871875 | 815.740625 | 815.746875 | 815.615625 | 815.621875 | 815.490625 | 815.496875 | 815.365625 | 815.371875 |
| Base Tx | 860.865625 | 860.871875 | 860.740625 | 860.746875 | 860.615625 | 860.621875 | 860.490625 | 860.496875 | 860.365625 | 860.371875 |
| Ch. No. | 252 |  | 262 |  | 272 |  | 282 |  | 292 |  |
| Base Rx | 815.85625 |  | 815.73125 |  | 815.60625 |  | 815.48125 |  | 815.35625 |  |
| Base Tx | 860.85625 |  | 860.73125 |  | 860.60625 |  | 860.48125 |  | 860.35625 |  |
| Ch. No. | 252a | 252b | 262a | 262b | 272a | 272b | 282a | 282b | 292a | 292b |
| Base Rx | 815.853125 | 815.859375 | 815.728125 | 815.734375 | 815.603125 | 815.609375 | 815.478125 | 815.484375 | 815.353125 | 815.359375 |
| Base Tx | 860.853125 | 860.859375 | 860.728125 | 860.734375 | 860.603125 | 860.609375 | 860.478125 | 860.484375 | 860.353125 | 860.359375 |
| Ch. No. | 253 |  | 263 |  | 273 |  | 283 |  | 293 |  |
| Base Rx | 815.84375 |  | 815.71875 |  | 815.59375 |  | 815.46875 |  | 815.34375 |  |
| Base Tx | 860.84375 |  | 860.71875 |  | 860.59375 |  | 860.46875 |  | 860.34375 |  |
| Ch. No. | 253a | 253b | 263a | 263b | 273a | 273b | 283a | 283b | 293a | 293b |
| Base Rx | 815.840625 | 815.846875 | 815.715625 | 815.721875 | 815.590625 | 815.596875 | 815.465625 | 815.471875 | 815.340625 | 815.346875 |
| Base Tx | 860.840625 | 860.846875 | 860.715625 | 860.721875 | 860.590625 | 860.596875 | 860.465625 | 860.471875 | 860.340625 | 860.346875 |
| Ch. No. | 254 |  | 264 |  | 274 |  | 284 |  | 294 |  |
| Base Rx | 815.83125 |  | 815.70625 |  | 815.58125 |  | 815.45625 |  | 815.33125 |  |
| Base Tx | 860.83125 |  | 860.70625 |  | 860.58125 |  | 860.45625 |  | 860.33125 |  |
| Ch. No. | 254a | 254b | 264a | 264b | 274a | 274b | 284a | 284b | 294a | 294b |
| Base Rx | 815.828125 | 815.834375 | 815.703125 | 815.709375 | 815.578125 | 815.584375 | 815.453125 | 815.459375 | 815.328125 | 815.334375 |
| Base Tx | 860.828125 | 860.834375 | 860.703125 | 860.709375 | 860.578125 | 860.584375 | 860.453125 | 860.459375 | 860.328125 | 860.334375 |
| Ch. No. | 255 |  | 265 |  | 275 |  | 285 |  | 295 |  |
| Base Rx | 815.81875 |  | 815.69375 |  | 815.56875 |  | 815.44375 |  | 815.31875 |  |
| Base Tx | 860.81875 |  | 860.69375 |  | 860.56875 |  | 860.44375 |  | 860.31875 |  |
| Ch. No. | 255a | 255b | 265a | 265b | 275a | 275b | 285a | 285b | 295a | 295b |
| Base Rx | 815.815625 | 815.821875 | 815.690625 | 815.696875 | 815.565625 | 815.571875 | 815.440625 | 815.446875 | 815.315625 | 815.321875 |
| Base Tx | 860.815625 | 860.821875 | 860.690625 | 860.696875 | 860.565625 | 860.571875 | 860.440625 | 860.446875 | 860.315625 | 860.321875 |
| Ch. No. | 256 |  | 266 |  | 276 |  | 286 |  | 296 |  |
| Base Rx | 815.80625 |  | 815.68125 |  | 815.55625 |  | 815.43125 |  | 815.30625 |  |
| Base Tx | 860.80625 |  | 860.68125 |  | 860.55625 |  | 860.43125 |  | 860.30625 |  |
| Ch. No. | 256a | 256b | 266a | 266b | 276a | 276b | 286a | 286b | 296a | 296b |
| Base Rx | 815.803125 | 815.809375 | 815.678125 | 815.684375 | 815.553125 | 815.559375 | 815.428125 | 815.434375 | 815.303125 | 815.309375 |
| Base Tx | 860.803125 | 860.809375 | 860.678125 | 860.684375 | 860.553125 | 860.559375 | 860.428125 | 860.434375 | 860.303125 | 860.309375 |
| Ch. No. | 257 |  | 267 |  | 277 |  | 287 |  | 297 |  |
| Base Rx | 815.79375 |  | 815.66875 |  | 815.54375 |  | 815.41875 |  | 815.29375 |  |
| Base Tx | 860.79375 |  | 860.66875 |  | 860.54375 |  | 860.41875 |  | 860.29375 |  |
| Ch. No. | 257a | 257b | 267a | 267b | 277a | 277b | 287a | 287b | 297a | 297b |
| Base Rx | 815.790625 | 815.796875 | 815.665625 | 815.671875 | 815.540625 | 815.546875 | 815.415625 | 815.421875 | 815.290625 | 815.296875 |
| Base Tx | 860.790625 | 860.796875 | 860.665625 | 860.671875 | 860.540625 | 860.546875 | 860.415625 | 860.421875 | 860.290625 | 860.296875 |
| Ch. No. | 258 |  | 268 |  | 278 |  | 288 |  | 298 |  |
| Base Rx | 815.78125 |  | 815.65625 |  | 815.53125 |  | 815.40625 |  | 815.28125 |  |
| Base Tx | 860.78125 |  | 860.65625 |  | 860.53125 |  | 860.40625 |  | 860.28125 |  |
| Ch. No. | 258a | 258b | 268a | 268b | 278a | 278b | 288a | 288b | 298a | 298b |
| Base Rx | 815.778125 | 815.784375 | 815.653125 | 815.659375 | 815.528125 | 815.534375 | 815.403125 | 815.409375 | 815.278125 | 815.284375 |
| Base Tx | 860.778125 | 860.784375 | 860.653125 | 860.659375 | 860.528125 | 860.534375 | 860.403125 | 860.409375 | 860.278125 | 860.284375 |
| Ch. No. | 259 |  | 269 |  | 279 |  | 289 |  | 299 |  |
| Base Rx | 815.76875 |  | 815.64375 |  | 815.51875 |  | 815.39375 |  | 815.26875 |  |
| Base Tx | 860.76875 |  | 860.64375 |  | 860.51875 |  | 860.39375 |  | 860.26875 |  |
| Ch. No. | 259a | 259b | 269a | 269b | 279a | 279b | 289a | 289b | 299a | 299b |
| Base Rx | 815.765625 | 815.771875 | 815.640625 | 815.646875 | 815.515625 | 815.521875 | 815.390625 | 815.396875 | 815.265625 | 815.271875 |
| Base Tx | 860.765625 | 860.771875 | 860.640625 | 860.646875 | 860.515625 | 860.521875 | 860.390625 | 860.396875 | 860.265625 | 860.271875 |
| Ch. No. | 260 |  | 270 |  | 280 |  | 290 |  | 300 |  |
| Base Rx | 815.75625 |  | 815.63125 |  | 815.50625 |  | 815.38125 |  | 815.25625 |  |
| Base Tx | 860.75625 |  | 860.63125 |  | 860.50625 |  | 860.38125 |  | 860.25625 |  |
| Ch. No. | 260a | 260b | 270a | 270b | 280a | 280b | 290a | 290b | 300a | 300b |
| Base Rx | 815.753125 | 815.759375 | 815.628125 | 815.634375 | 815.503125 | 815.509375 | 815.378125 | 815.384375 | 815.253125 | 815.259375 |
| Base Tx | 860.753125 | 860.759375 | 860.628125 | 860.634375 | 860.503125 | 860.509375 | 860.378125 | 860.384375 | 860.253125 | 860.259375 |


| Ch. No. | 301 |  | 311 |  | 321 |  | 331 |  | 341 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Rx | 815.24375 |  | 815.11875 |  | 814.99375 |  | 814.86875 |  | 814.74375 |  |
| Base Tx | 860.24375 |  | 860.11875 |  | 859.99375 |  | 859.86875 |  | 859.74375 |  |
| Ch. No. | 301a | 301b | 311a | 311b | 321a | 321b | 331a | 331b | 341a | 341b |
| Base Rx | 815.240625 | 815.246875 | 815.115625 | 815.121875 | 814.990625 | 814.996875 | 814.865625 | 814.871875 | 814.740625 | 814.746875 |
| Base Tx | 860.240625 | 860.246875 | 860.115625 | 860.121875 | 859.990625 | 859.996875 | 859.865625 | 859.871875 | 859.740625 | 859.746875 |
| Ch. No. | 302 |  | 312 |  | 322 |  | 332 |  | 342 |  |
| Base Rx | 815.23125 |  | 815.10625 |  | 814.98125 |  | 814.85625 |  | 814.73125 |  |
| Base Tx | 860.23125 |  | 860.10625 |  | 859.98125 |  | 859.85625 |  | 859.73125 |  |
| Ch. No. | 302a | 302b | 312a | 312b | 322a | 322b | 332a | 332b | 342a | 342b |
| Base Rx | 815.228125 | 815.234375 | 815.103125 | 815.109375 | 814.978125 | 814.984375 | 814.853125 | 814.859375 | 814.728125 | 814.734375 |
| Base Tx | 860.228125 | 860.234375 | 860.103125 | 860.109375 | 859.978125 | 859.984375 | 859.853125 | 859.859375 | 859.728125 | 859.734375 |
| Ch. No. | 303 |  | 313 |  | 323 |  | 333 |  | 343 |  |
| Base Rx | 815.21875 |  | 815.09375 |  | 814.96875 |  | 814.84375 |  | 814.71875 |  |
| Base Tx | 860.21875 |  | 860.09375 |  | 859.96875 |  | 859.84375 |  | 859.71875 |  |
| Ch. No. | 303a | 303b | 313a | 313b | 323a | 323b | 333a | 333b | 343a | 343b |
| Base Rx | 815.215625 | 815.221875 | 815.090625 | 815.096875 | 814.965625 | 814.971875 | 814.840625 | 814.846875 | 814.715625 | 814.721875 |
| Base Tx | 860.215625 | 860.221875 | 860.090625 | 860.096875 | 859.965625 | 859.971875 | 859.840625 | 859.846875 | 859.715625 | 859.721875 |
| Ch. No. | 304 |  | 314 |  | 324 |  | 334 |  | 344 |  |
| Base Rx | 815.20625 |  | 815.08125 |  | 814.95625 |  | 814.83125 |  | 814.70625 |  |
| Base Tx | 860.20625 |  | 860.08125 |  | 859.95625 |  | 859.83125 |  | 859.70625 |  |
| Ch. No. | 304a | 304b | 314a | 314b | 324a | 324b | 334a | 334b | 344a | 344b |
| Base Rx | 815.203125 | 815.209375 | 815.078125 | 815.084375 | 814.953125 | 814.959375 | 814.828125 | 814.834375 | 814.703125 | 814.709375 |
| Base Tx | 860.203125 | 860.209375 | 860.078125 | 860.084375 | 859.953125 | 859.959375 | 859.828125 | 859.834375 | 859.703125 | 859.709375 |
| Ch. No. | 305 |  | 315 |  | 325 |  | 335 |  | 345 |  |
| Base Rx | 815.19375 |  | 815.06875 |  | 814.94375 |  | 814.81875 |  | 814.69375 |  |
| Base Tx | 860.19375 |  | 860.06875 |  | 859.94375 |  | 859.81875 |  | 859.69375 |  |
| Ch. No. | 305a | 305b | 315a | 315b | 325a | 325b | 335a | 335b | 345a | 345b |
| Base Rx | 815.190625 | 815.196875 | 815.065625 | 815.071875 | 814.940625 | 814.946875 | 814.815625 | 814.821875 | 814.690625 | 814.696875 |
| Base Tx | 860.190625 | 860.196875 | 860.065625 | 860.071875 | 859.940625 | 859.946875 | 859.815625 | 859.821875 | 859.690625 | 859.696875 |
| Ch. No. | 306 |  | 316 |  | 326 |  | 336 |  | 346 |  |
| Base Rx | 815.18125 |  | 815.05625 |  | 814.93125 |  | 814.80625 |  | 814.68125 |  |
| Base Tx | 860.18125 |  | 860.05625 |  | 859.93125 |  | 859.80625 |  | 859.68125 |  |
| Ch. No. | 306a | 306b | 316a | 316b | 326a | 326b | 336a | 336b | 346a | 346b |
| Base Rx | 815.178125 | 815.184375 | 815.053125 | 815.059375 | 814.928125 | 814.934375 | 814.803125 | 814.809375 | 814.678125 | 814.684375 |
| Base Tx | 860.178125 | 860.184375 | 860.053125 | 860.059375 | 859.928125 | 859.934375 | 859.803125 | 859.809375 | 859.678125 | 859.684375 |
| Ch. No. | 307 |  | 317 |  | 327 |  | 337 |  | 347 |  |
| Base Rx | 815.16875 |  | 815.04375 |  | 814.91875 |  | 814.79375 |  | 814.66875 |  |
| Base Tx | 860.16875 |  | 860.04375 |  | 859.91875 |  | 859.79375 |  | 859.66875 |  |
| Ch. No. | 307a | 307b | 317a | 317b | 327a | 327b | 337a | 337b | 347a | 347b |
| Base Rx | 815.165625 | 815.171875 | 815.040625 | 815.046875 | 814.915625 | 814.921875 | 814.790625 | 814.796875 | 814.665625 | 814.671875 |
| Base Tx | 860.165625 | 860.171875 | 860.040625 | 860.046875 | 859.915625 | 859.921875 | 859.790625 | 859.796875 | 859.665625 | 859.671875 |
| Ch. No. | 308 |  | 318 |  | 328 |  | 338 |  | 348 |  |
| Base Rx | 815.15625 |  | 815.03125 |  | 814.90625 |  | 814.78125 |  | 814.65625 |  |
| Base Tx | 860.15625 |  | 860.03125 |  | 859.90625 |  | 859.78125 |  | 859.65625 |  |
| Ch. No. | 308a | 308b | 318a | 318b | 328a | 328b | 338a | 338b | 348a | 348b |
| Base Rx | 815.153125 | 815.159375 | 815.028125 | 815.034375 | 814.903125 | 814.909375 | 814.778125 | 814.784375 | 814.653125 | 814.659375 |
| Base Tx | 860.153125 | 860.159375 | 860.028125 | 860.034375 | 859.903125 | 859.909375 | 859.778125 | 859.784375 | 859.653125 | 859.659375 |
| Ch. No. | 309 |  | 319 |  | 329 |  | 339 |  | 349 |  |
| Base Rx | 815.14375 |  | 815.01875 |  | 814.89375 |  | 814.76875 |  | 814.64375 |  |
| Base Tx | 860.14375 |  | 860.01875 |  | 859.89375 |  | 859.76875 |  | 859.64375 |  |
| Ch. No. | 309a | 309b | 319a | 319b | 329a | 329b | 339a | 339b | 349a | 349b |
| Base Rx | 815.140625 | 815.146875 | 815.015625 | 815.021875 | 814.890625 | 814.896875 | 814.765625 | 814.771875 | 814.640625 | 814.646875 |
| Base Tx | 860.140625 | 860.146875 | 860.015625 | 860.021875 | 859.890625 | 859.896875 | 859.765625 | 859.771875 | 859.640625 | 859.646875 |
| Ch. No. | 310 |  | 320 |  | 330 |  | 340 |  | 350 |  |
| Base Rx | 815.13125 |  | 815.00625 |  | 814.88125 |  | 814.75625 |  | 814.63125 |  |
| Base Tx | 860.13125 |  | 860.00625 |  | 859.88125 |  | 859.75625 |  | 859.63125 |  |
| Ch. No. | 310a | 310b | 320a | 320b | 330a | 330b | 340a | 340b | 350a | 350b |
| Base Rx | 815.128125 | 815.134375 | 815.003125 | 815.009375 | 814.878125 | 814.884375 | 814.753125 | 814.759375 | 814.628125 | 814.634375 |
| Base Tx | 860.128125 | 860.134375 | 860.003125 | 860.009375 | 859.878125 | 859.884375 | 859.753125 | 859.759375 | 859.628125 | 859.634375 |


| Ch. No. | 351 |  | 361 |  | 371 |  | 381 |  | 391 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Base Rx | 814.61875 |  | 814.49375 |  | 814.36875 |  | 814.24375 |  | 814.11875 |  |
| Base Tx | 859.61875 |  | 859.49375 |  | 859.36875 |  | 859.24375 |  | 859.11875 |  |
| Ch. No. | 351a | 351b | 361a | 361b | 371a | 371b | 381a | 381b | 391a | 391b |
| Base Rx | 814.615625 | 814.621875 | 814.490625 | 814.496875 | 814.365625 | 814.371875 | 814.240625 | 814.246875 | 814.115625 | 814.121875 |
| Base Tx | 859.615625 | 859.621875 | 859.490625 | 859.496875 | 859.365625 | 859.371875 | 859.240625 | 859.246875 | 859.115625 | 859.121875 |
| Ch. No. | 352 |  | 362 |  | 372 |  | 382 |  | 392 |  |
| Base Rx | 814.60625 |  | 814.48125 |  | 814.35625 |  | 814.23125 |  | 814.10625 |  |
| Base Tx | 859.60625 |  | 859.48125 |  | 859.35625 |  | 859.23125 |  | 859.10625 |  |
| Ch. No. | 352a | 352b | 362a | 362b | 372a | 372b | 382a | 382b | 392a | 392b |
| Base Rx | 814.603125 | 814.609375 | 814.478125 | 814.484375 | 814.353125 | 814.359375 | 814.228125 | 814.234375 | 814.103125 | 814.109375 |
| Base Tx | 859.603125 | 859.609375 | 859.478125 | 859.484375 | 859.353125 | 859.359375 | 859.228125 | 859.234375 | 859.103125 | 859.109375 |
| Ch. No. | 353 |  | 363 |  | 373 |  | 383 |  | 393 |  |
| Base Rx | 814.59375 |  | 814.46875 |  | 814.34375 |  | 814.21875 |  | 814.09375 |  |
| Base Tx | 859.59375 |  | 859.46875 |  | 859.34375 |  | 859.21875 |  | 859.09375 |  |
| Ch. No. | 353a | 353b | 363a | 363b | 373a | 373b | 383a | 383b | 393a | 393b |
| Base Rx | 814.590625 | 814.596875 | 814.465625 | 814.471875 | 814.340625 | 814.346875 | 814.215625 | 814.221875 | 814.090625 | 814.096875 |
| Base Tx | 859.590625 | 859.596875 | 859.465625 | 859.471875 | 859.340625 | 859.346875 | 859.215625 | 859.221875 | 859.090625 | 859.096875 |
| Ch. No. | 354 |  | 364 |  | 374 |  | 384 |  | 394 |  |
| Base Rx | 814.58125 |  | 814.45625 |  | 814.33125 |  | 814.20625 |  | 814.08125 |  |
| Base Tx | 859.58125 |  | 859.45625 |  | 859.33125 |  | 859.20625 |  | 859.08125 |  |
| Ch. No. | 354a | 354b | 364a | 364b | 374a | 374b | 384a | 384b | 394a | 394b |
| Base Rx | 814.578125 | 814.584375 | 814.453125 | 814.459375 | 814.328125 | 814.334375 | 814.203125 | 814.209375 | 814.078125 | 814.084375 |
| Base Tx | 859.578125 | 859.584375 | 859.453125 | 859.459375 | 859.328125 | 859.334375 | 859.203125 | 859.209375 | 859.078125 | 859.084375 |
| Ch. No. | 355 |  | 365 |  | 375 |  | 385 |  | 395 |  |
| Base Rx | 814.56875 |  | 814.44375 |  | 814.31875 |  | 814.19375 |  | 814.06875 |  |
| Base Tx | 859.56875 |  | 859.44375 |  | 859.31875 |  | 859.19375 |  | 859.06875 |  |
| Ch. No. | 355a | 355b | 365a | 365b | 375a | 375b | 385a | 385b | 395a | 395b |
| Base Rx | 814.565625 | 814.571875 | 814.440625 | 814.446875 | 814.315625 | 814.321875 | 814.190625 | 814.196875 | 814.065625 | 814.071875 |
| Base Tx | 859.565625 | 859.571875 | 859.440625 | 859.446875 | 859.315625 | 859.321875 | 859.190625 | 859.196875 | 859.065625 | 859.071875 |
| Ch. No. | 356 |  | 366 |  | 376 |  | 386 |  | 396 |  |
| Base Rx | 814.55625 |  | 814.43125 |  | 814.30625 |  | 814.18125 |  | 814.05625 |  |
| Base Tx | 859.55625 |  | 859.43125 |  | 859.30625 |  | 859.18125 |  | 859.05625 |  |
| Ch. No. | 356a | 356b | 366a | 366b | 376a | 376b | 386a | 386b | 396a | 396b |
| Base Rx | 814.553125 | 814.559375 | 814.428125 | 814.434375 | 814.303125 | 814.309375 | 814.178125 | 814.184375 | 814.053125 | 814.059375 |
| Base Tx | 859.553125 | 859.559375 | 859.428125 | 859.434375 | 859.303125 | 859.309375 | 859.178125 | 859.184375 | 859.053125 | 859.059375 |
| Ch. No. | 357 |  | 367 |  | 377 |  | 387 |  | 397 |  |
| Base Rx | 814.54375 |  | 814.41875 |  | 814.29375 |  | 814.16875 |  | 814.04375 |  |
| Base Tx | 859.54375 |  | 859.41875 |  | 859.29375 |  | 859.16875 |  | 859.04375 |  |
| Ch. No. | 357a | 357b | 367a | 367b | 377a | 377b | 387a | 387b | 397a | 397b |
| Base Rx | 814.540625 | 814.546875 | 814.415625 | 814.421875 | 814.290625 | 814.296875 | 814.165625 | 814.171875 | 814.040625 | 814.046875 |
| Base Tx | 859.540625 | 859.546875 | 859.415625 | 859.421875 | 859.290625 | 859.296875 | 859.165625 | 859.171875 | 859.040625 | 859.046875 |
| Ch. No. | 358 |  | 368 |  | 378 |  | 388 |  | 398 |  |
| Base Rx | 814.53125 |  | 814.40625 |  | 814.28125 |  | 814.15625 |  | 814.03125 |  |
| Base Tx | 859.53125 |  | 859.40625 |  | 859.28125 |  | 859.15625 |  | 859.03125 |  |
| Ch. No. | 358a | 358b | 368a | 368b | 378a | 378b | 388a | 388b | 398a | 398b |
| Base Rx | 814.528125 | 814.534375 | 814.403125 | 814.409375 | 814.278125 | 814.284375 | 814.153125 | 814.159375 | 814.028125 | 814.034375 |
| Base Tx | 859.528125 | 859.534375 | 859.403125 | 859.409375 | 859.278125 | 859.284375 | 859.153125 | 859.159375 | 859.028125 | 859.034375 |
| Ch. No. | 359 |  | 369 |  | 379 |  | 389 |  | 399 |  |
| Base Rx | 814.51875 |  | 814.39375 |  | 814.26875 |  | 814.14375 |  | 814.01875 |  |
| Base Tx | 859.51875 |  | 859.39375 |  | 859.26875 |  | 859.14375 |  | 859.01875 |  |
| Ch. No. | 359a | 359b | 369a | 369b | 379a | 379b | 389a | 389b | 399a | 399b |
| Base Rx | 814.515625 | 814.521875 | 814.390625 | 814.396875 | 814.265625 | 814.271875 | 814.140625 | 814.146875 | 814.015625 | 814.021875 |
| Base Tx | 859.515625 | 859.521875 | 859.390625 | 859.396875 | 859.265625 | 859.271875 | 859.140625 | 859.146875 | 859.015625 | 859.021875 |
| Ch. No. | 360 |  | 370 |  | 380 |  | 390 |  | 400 |  |
| Base Rx | 814.50625 |  | 814.38125 |  | 814.25625 |  | 814.13125 |  | 814.00625 |  |
| Base Tx | 859.50625 |  | 859.38125 |  | 859.25625 |  | 859.13125 |  | 859.00625 |  |
| Ch. No. | 360a | 360b | 370a | 370b | 380a | 380b | 390a | 390b | 400a | 400b |
| Base Rx | 814.503125 | 814.509375 | 814.378125 | 814.384375 | 814.253125 | 814.259375 | 814.128125 | 814.134375 | 814.003125 | 814.009375 |
| Base Tx | 859.503125 | 859.509375 | 859.378125 | 859.384375 | 859.253125 | 859.259375 | 859.128125 | 859.134375 | 859.003125 | 859.009375 |

## APPENDIX -C CHANNEL BANDWIDTH ARRANGEMENTS (25 KHZ, 12.5 KHZ \&

### 6.25 KHZ)



APPENDIX- D CHANNELING ALLOTMENT PLAN (12.5 KHZ \& 6.25 KHZ)

| Block | Sub Block |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  | 2 |  |  | 3 |  |  |  | 4 |  |  |  | 5 |  |  |  | 6 |  |  |  | 7 |  |  |  | 8 |  |  |  | 9 |  |  |  | 10 |  |  |
|  | 1 | 2 | $3 \quad 4$ |  |  | 5 |  | 6 |  | 7 |  | 8 |  | 9 |  | 10 |  | 11 |  | 12 |  | 13 |  | 14 |  | 15 |  | 16 |  | 17 |  | 18 |  | 19 |  | 20  <br> 20 a 20 b |
|  | 1 a 1 b | 2a ${ }^{\text {a }}$ 2b | 3a ${ }^{\text {a }}$ 3b | 4 a | 4b | 5 | 5 b | 6 a | 6 b | 7 a | 7 b | 8 a | 8b | 9 a | 9 b | 10a | 10 b | 12 | 11b | 12a | 12b | 13a | 13b | 14a | 14b | 15a | 15b | 16a | 16b | 17a | 17b | $18 \mathrm{a}-18 \mathrm{~b}$38 |  |  | 19b |  |
|  | 21 | 22 | 23 | 24 |  | 25 |  | 26 |  | 27 |  | 28 |  | 29 |  | 30 |  | 31 |  | 32 |  | 33 |  | 34 |  | 35 |  | 36 |  | 37 |  |  |  | 39 |  | $40$ |
|  | 21a 21 l | 22a ${ }^{\text {a }}$ 22b | 23a ${ }^{23}$ 23b | 24 a | 24b | 25a | 25b | 26a | 26b | 27 a | 27 b | 28 a | 28 b | 29a | 29b | 30a | 30 b | 31 a | 31b | 32a | 32b | 33 a | 33 b | 34a | 34b | 35a | 35b | 36a | 36b | 37a | 37b | 38  39  40  <br> 38 a 38 b 39 a 39 b 40 a 40 b |  |  |  |  |
|  | 41 | 42 | 43 | 44 |  | 45 |  | 46 |  | 47 |  | 48 |  | 49 |  | 50 |  | 51 |  | 52 |  | 53 |  | 54 |  | 55 |  | 56 |  | 57 |  | 58 |  | 59 |  | 60 |
|  | 41a 41 b | 42a ${ }^{4}$ 42b | 43a ${ }^{4} \mathbf{4 3 b}$ | 44a | 44b | 45a | 45b | 46a | 46b | 47a | 47b | 48a | 48b | 49a | 49 b | 50a | 50b | 51a | 51b | 52a | 52 b | 53a | 53b | 54a | 54b | 55a | 55b | 56a | 56b | 57a | 57b | 58a | 58b | 59a | 59b | 60a ${ }^{\text {6 }}$ 60b |
|  | 61 | 62 | $43{ }^{63}$ | 64 |  | 65 |  | 66 |  | 67 |  | 68 |  | 69 |  | 70 |  | 71 |  | 72 |  | 73 |  | 74 |  | 75 |  | 76 |  | 77 |  | 78 |  | 79 |  | 80 |
|  | 61a 61 b | 62a ${ }^{\text {a }}$ 62b | 63a 63b | 64a 84 |  | 65a | 65b | 66a | 66b | 67a | 67b | 68a | 68b | 69a | 69b | 70a | 70b | $71 a$ | 71b | 72a | 72b | 73a | 73b | 74a | 74b | 75a | 75b | 76a | 76b | 77 a | 77b | 78a | 78b | 79a | 79 b | 80a ${ }^{80} 80$ |
|  | 81 | 82 | 63a 83 |  |  | 85 |  | 86 |  | 87 |  | 88 |  | 89 |  | 90 |  | 91 |  | 92 |  | 93 |  | 94 |  | 95 |  | 96 |  | 97 |  | 98 |  | 99 |  | 100 |
|  | 81a 81 b | 82a ${ }^{\text {8 }}$ 82b | 83a ${ }^{\text {83 }}$ | 84a | 84b | 85a | 85b | 86a | 86b | 87a | 87b | 88 a | 88b | 89a | 89b | 90a | 90b | 91a | 91b | 92a | 92b | 93a | 93b | 94a | 94b | 95a | 95b | $96 a$ | 96b | 97a | 97b | 98 a | 98b | 99a | 99b | 100a 100 b |
| A | 101 | 102 | 103 | 104 |  | 105 |  | 106 |  | 107 |  | 108 |  | 109 |  | 110 |  | 111 |  | 112 |  | 113 |  | 114 |  | 115 |  | 116 |  | 117 |  | 118 |  | 119 |  | 120 |
|  | $101 a$ $101 b$ | 102a ${ }^{102}$ 102b | 103a 103 b | 104a | 104b | 105a | 105b | 106a | 106b | 107a | 107b | 108a | 108b | 109a | 109b | 110a | 110b | 111a | 111b | 112a | 112b | 113a | 113 b | 114a | 114b | 115a | 115b | 116a | 116b | 117a | 117b | 118a | 118b | 119a | 119b | $120 a$ 120 b |
|  | 121 | 122 | 123 | 124 |  | 125 |  | 126 |  | 127 |  | 128 |  | 129 |  | 130 |  | 131 |  | 132 |  | 133 |  | 134 |  | 135 |  | 136 |  | 137 |  | 138 |  | 139 |  | 140 |
|  | 121 a 121 b | 122a ${ }^{1222 b}$ | 123a 123 b | 124a | 124b | 125a | 125b | 126a | 126b | 127a | 127b | 128a | 128b | 129a | 129b | 130a | 130 b | 131a | 131 b | 132a | 132b | 133a | 133b | 134a | 134b | 135a | 135b | 136a | 136b | 137a | 137b | 138 a | 138b | 139a | 139b | 140 a 140 b |
|  | 141 | 142 | 143 | 144 |  | 145 |  | 146 |  | 147 |  | 148 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 15 |  |  |  | 15 |  |  |  | 160 |
|  | 141 a 141 b | 142 a 142 b | 143 a 143 b | 144a | 144b | 145a | 145b | 146a | 146b | 147a | 147b | 148 a | 148b | 149a | 149b | 150a | 150b | 151a | 151b | 152a | 152b | 153a | 153b | 154a | 154b | 155a | 155b | 156a | 156b | 157a | 157b | 158a | 158b | 159a | 159b | 160 a 160 b |
|  | 161 | 162 | 163 |  |  |  |  |  | 66 |  | 67 |  | 88 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 17 |  |  |  | 17 |  |  |  | 180 |
|  | 161a 161 b | 162a 162 b | 163a 163 b | 164a | 164b | 165a | 165b | 166a | 166b | 167a | 167b | 168a | 168b | 169a | 169b | 170a | 170b | 171a | 171 b | 172a | 172b | 173a | 173b | 174a | 174 b | 175a | 175b | 176a | 176 b | 177a | 177b | 178a | 178b | 179a | 179b | 180 a 180 b |
|  | 181 | 182 | 183 |  | 4 |  |  |  | 86 |  | 87 |  | 88 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 19 |  |  |  | 19 |  |  |  | 200 |
|  | $181 a$ $181 b$ | 182 a 182 b | 183a 183 b | 184a | 184b | 185a | 185b | 186a | 186b | 187a | 187b | 188 a | 188b | 189a | 189b | 190a | 190b | 191a | 191b | 192a | 192b | 193a | 193b | 194a | 194b | 195a | 195b | 196a | 196b | 197a | 197 | 198a | 198b | 199a | 199b | 200a 200 b |
|  | 201 | 202 | 203 |  | 4 |  |  |  | 20 |  | 07 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 21 |  |  |  | 21 |  |  |  | 220 |
|  | 201a $201 b$ | 202a 202b | 203a 203b | 204a | 204b | 205a | 205b | 206a | 206b | 207a | 207b | 208a | 208b | 209a | 209b | 210a | 210 b | 211a | 211b | 212a | 212 b | 213a | 213b | 214a | 214b | 215a | 215b | 216a | 216b | 217a | 217 b | 218a | 218 | 219a | 219 | 220 a 220 b |
|  | 221 | 222 | 223 |  |  |  |  |  | 226 |  | 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 23 |  |  |  | 23 |  |  |  | 240 |
|  | $221 a$ <br> 221 b | 222a ${ }^{\text {222b }}$ | 223a 223 b | 224a | 224b | 225a | 225b | 226a | 226b | 227a | 227b | 228 a | 228b | 229a | 229b | 230a | 230 b | 231a | 231 b | 232a | 232 b | 233a | 233b | 234a | 234 b | 235a | 235b | $236 a$ | 236 b | 237a | 237 b | 238a | 238b | 239a | 239b | 240a <br> 240 |
|  | 241 | 242 | 243 |  |  |  |  |  | 46 |  | 47 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 25 |  |  |  | 25 |  |  |  | 260 |
|  | 241a 241b | 242a 242 b | 243a 243 b | 244a | 244b | 245a | 245b | $246 a$ | 246 b | 247a | 247b | 248 a | 248b | 249a | 249b | 250a | 250 b | 251a | 251 b | 252a | 252b | 253a | 253 b | 254a | 254b | 255a | 255b | 256a | 256 b | 257a | 257 b | 258a | 258b | 259a | $259 b$ | $260 a$ 260 b |
|  | 261 | 262 | 263 |  |  |  |  |  | 66 |  | 67 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 27 |  |  |  | 27 |  |  |  | 280 |
|  | 261a 261 b | 262a 262 b | 263a 263 b | 264a | $264 b$ | 265a | 265b | 266a | 266b | 267a | 267b | 268 a | 268b | 269a | 269b | 270a | 270 b | 271a | 271 b | 272a | 272 b | 273a | 273b | 274a | 274b | 275a | 275b | 276a | 276 b | 277a |  | 278a | 278b | 279a | 279 b | 280 a 280 b |
|  | 281 | 282 | 283 |  | 4 |  |  |  | 36 |  | 87 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 29 |  |  |  | 29 |  |  |  | 300 |
| B | $281 a$ $281 b$ | 282 a 282 b | 283a 283 b | 284a | 284b | 285a | 285b | 286a | 286b | 287a | 287b | 288 a | 288b | 289a | 289b | 290a | 290 b | 291a | 291 b | 292a | 292 b | 293a | 293b | 294a | 294b | 295a | 295b | 296a | 296 b | 297a | 297b | 298a | 298b | 299a | 299b | $300 a$ 300 b |
|  | 301 | 302 | 303 |  |  |  |  |  | 206 |  | 07 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 31 |  |  |  | 31 |  |  |  | 320 |
|  | $301 a$ 301 b | 302 a 302 b | 303 a 303b | 304a | 304b | 305a | 305b | 306a | 306b | 307a | 307b | 308a | 308b | 309a | 309b | 310a | 310 b | 311a | 311b | 312a | 312b | 313a | 313b | 314a | 314b | 315a | 315b | 316a | 316b | 317a | 317b | 318a | 318b | 319a | 319b | 320 a 320 b <br> 2  |
|  | 321 | 322 | 323 |  |  |  |  |  | 26 |  | 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 336 |  |  |  | 338 |  |  |  | 340 |
|  | 321 a <br> 121 b | 322 a 322 b | 323 a 323 b | 324a | 324b | 325a | 325b | 326a | 326b | 327a | 327b | 328a | 328b | 329a | 329b | 330a | 330 b | 331a | 331 b | 332a | 332 b | 333a | 333 b | 334a | 334b | 335a | 335b | 336a | 336 b | 337a | 337 b | 338a | 338b | 339a | 339 b | 340 a 340 b |
|  | 341 | 342 | 343 |  |  |  |  |  | 446 |  | 47 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 35 |  |  |  | 35 |  |  |  | 360 |
|  | 341a 341 b | 342a 342 b | 343a 343 b | 344a | 344b | 345a | 345b | 346a | 346b | 347a | 347b | 348a | 348b | 349a | 349b | 350a | 350b | 351a | 351 b | 352a | 352 b | 353a | 353b | 354a | 354b | 355a | 355b | 356a | 356b | 357a | 357 b | 358a | 358b | 359a | 359b | $360 a$ $360 b$ |
|  | 361 | 362 | 363 |  |  |  |  |  | 66 |  | 67 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 37 |  |  |  | 37 |  |  |  | 380 |
|  | $361 a$ $361 b$ | $362 a$ 362 b | $363 a$ $363 b$ | 364a | $364 b$ | 365a | 365b | 366a | 366b | 367a | 367b | 368a | 368b | 369a | 369b | 370a | 370 b | 371a | 371 b | 372a | 372 b | 373a | 373b | 374a | 374b | 375a | 375b | 376a | 376b | 377a | 3776 | 378a | 378b | 379a | 379 b | 380 a 380 b |
|  | 381 | 382 | 383 |  |  |  |  |  | 86 |  | 87 |  | 8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 39 |  |  |  | 39 |  |  |  | 400 |
|  | 381 a 381 b | 382a 382 b | 383a 383 b | 384a | 384b | 385a | 385b | 386a | 386b | 387a | 387b | 388a | 388b | 389a | 389b | 390a | 390 b | 391a | 391b | 392a | 392b | 393a | 393b | 394a | 394b | 395a | 395b | 396a | 396b | 397a | 397b | 398a | 398b | 399a | 399b | 400 a 400 b |

ARYA OMNITALK
WALKY TALKY I GPS TRACKING | TOLL \& HTMS
R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE FOR THE =REQUENCY OF $814-819 \mathrm{MHz}$ AND $859-864 \mathrm{MHz}$ ( $\mathbf{1 2 . 5} \mathbf{~ K H z}$ CHANNEL BANDWIDTH PLAN

| S.No. | Channel Arrangement |  |  |  |  | Block No. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 41 | 81 | 121 | 161 | ------------ | 1A |
|  | 21 | 61 | 101 | 141 | 181 | -------------1 | 1B |
|  | 201 | 241 | 281 | 321 | 361 | --- | 1 C |
|  | 221 | 261 | 301 | 341 | 381 | ------------ | 1D |
| 2 | 2 | 42 | 82 | 122 | 162 | -- | 2A |
|  | 22 | 62 | 102 | 142 | 182 | -------------2B | 2B |
|  | 202 | 242 | 282 | 322 | 362 | --- | 2C |
|  | 222 | 262 | 302 | 342 | 382 | ---- | 2D |
| 3 | 3 | 43 | 83 | 123 | 163 | -------- | 3A |
|  | 23 | 63 | 103 | 143 | 183 | --- | 3B |
|  | 203 | 243 | 283 | 323 | 363 | ------------ | 3 C |
|  | 223 | 263 | 303 | 343 | 383 | ------------ | 3D |
| 4 | 4 | 44 | 84 | 124 | 164 | ------------ 4 | 4A |
|  | 24 | 64 | 104 | 144 | 184 | ------------ 4 | 4B |
|  | 204 | 244 | 284 | 324 | 364 | -------------4C | 4 C |
|  | 224 | 264 | 304 | 344 | 384 | --- | 4D |
| 5 | 5 | 45 | 85 | 125 | 165 | ------- | 5A |
|  | 25 | 65 | 105 | 145 | 185 | ------------ 5 | 5B |
|  | 205 | 245 | 285 | 325 | 365 | ---------- | 5C |
|  | 225 | 265 | 305 | 345 | 385 | ------------ | 5D |
| 6 | 6 | 46 | 86 | 126 | 166 | --- | 6A |
|  | 26 | 66 | 106 | 146 | 186 | -------------6B | 6B |
|  | 206 | 246 | 286 | 326 | 366 | -- | 6C |
|  | 226 | 266 | 306 | 346 | 386 | -------------6D | 6D |
| 7 | 7 | 47 | 87 | 127 | 167 | -- | 7A |
|  | 27 | 67 | 107 | 147 | 187 | ---- | 7B |
|  | 207 | 247 | 287 | 327 | 367 | ------------7 | 7 C |
|  | 227 | 267 | 307 | 347 | 387 | -- | 7D |
| 8 | 8 | 48 | 88 | 128 | 168 | ------------ | 8A |
|  | 28 | 68 | 108 | 148 | 188 | ------------8 | 8B |
|  | 208 | 248 | 288 | 328 | 368 | ------------ 8 - | 8C |
|  | 228 | 268 | 308 | 348 | 388 | ------------ 8 - | 8D |
| 9 | 9 | 49 | 89 | 129 | 169 | ------------ 9 | 9A |
|  | 29 | 69 | 109 | 149 | 189 | ------------ | 9B |
|  | 209 | 249 | 289 | 329 | 369 | ------------ 9 | 9 C |
|  | 229 | 269 | 309 | 349 | 389 | ------------- | 9D |
| 10 | 10 | 50 | 90 | 130 | 170 | ------------- | 10A |
|  | 30 | 70 | 110 | 150 | 190 | ------------- | 10B |
|  | 210 | 250 | 290 | 330 | 370 | ------------ | 10C |
|  | 230 | 270 | 310 | 350 | 390 | ------------- | 10D |

R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE FOR THE =REQUENCY OF $814-819 \mathrm{MHz}$ AND $859-864 \mathrm{MHz}$ ( $\mathbf{1 2 . 5} \mathrm{KHz}$ CHANNEL BANDWIDTH PLAN

R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE FOR THE FREQUENCY OF $814-819 \mathrm{MHz}$ AND $859-864 \mathrm{MHz}$ ( 6.25 KHz CHANNEL BANDWIDTH PLAN)

| S.No. | Channel Arrangement |  |  |  |  |  |  |  |  | Block No. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | a | 41 | a | 81 | a | 121 | a | 161 | a | ----------- | 1A |
|  | 21 | a | 61 | a | 101 | a | 141 | a | 181 | a | -------- | 1B |
|  | 201 | a | 241 | a | 281 | a | 321 | a | 361 | a | ------- | 1 C |
|  | 221 | a | 261 | a | 301 | a | 341 | a | 381 | a | --------- | 1D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 2 | a | 42 | a | 82 | a | 122 | a | 162 | a | --- | 2 A |
|  | 22 | a | 62 | a | 102 | a | 142 | a | 182 | a | ---- | 2 C |
|  | 202 | a | 242 | a | 282 | a | 322 | a | 362 | a | ---- | 2 C |
|  | 222 | a | 262 | a | 302 | a | 342 | a | 382 | a | ----------- | 2D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 3 | a | 43 | a | 83 | a | 123 | a | 163 | a | ----------- | 3A |
|  | 23 | a | 63 | a | 103 | a | 143 | a | 183 | a | ---------- | 3B |
|  | 203 | a | 243 | a | 283 | a | 323 | a | 363 | a | ---------- | 3 C |
|  | 223 | a | 263 | a | 303 | a | 343 | a | 383 | a | ---------- | 3D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 4 | a | 44 | a | 84 | a | 124 | a | 164 | a | --------- | 4 A |
|  | 24 | a | 64 | a | 104 | a | 144 | a | 184 | a | --------- | 4B |
|  | 204 | a | 244 | a | 284 | a | 324 | a | 364 | a | --------- | 4 C |
|  | 224 | a | 264 | a | 304 | a | 344 | a | 384 | a | ----- | 4D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 5 | a | 45 | a | 85 | a | 125 | a | 165 | a | --------- | 5A |
|  | 25 | a | 65 | a | 105 | a | 145 | a | 185 | a | ---------- | 5B |
|  | 205 | a | 245 | a | 285 | a | 325 | a | 365 | a | ---- | 5 C |
|  | 225 | a | 265 | a | 305 | a | 345 | a | 385 | a | ---------- | 5D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 6 | a | 46 | a | 86 | a | 126 | a | 166 | a | ----------- | 6A |
|  | 26 | a | 66 | a | 106 | a | 146 | a | 186 | a | --------- | 6B |
|  | 206 | a | 246 | a | 286 | a | 326 | a | 366 | a | --------- | 6C |
|  | 226 | a | 266 | a | 306 | a | 346 | a | 386 | a | --------- | 6D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 7 | a | 47 | a | 87 | a | 127 | a | 167 | a | ----------- | 7A |
|  | 27 | a | 67 | a | 107 | a | 147 | a | 187 | a | -------- | 7B |
|  | 207 | a | 247 | a | 287 | a | 327 | a | 367 | a | ------- | $7 C$ |
|  | 227 | a | 267 | a | 307 | a | 347 | a | 387 | a | --------- | 7 D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | 8 | a | 48 | a | 88 | a | 128 | a | 168 | a | -------- | 8 A |
|  | 28 | a | 68 | a | 108 | a | 148 | a | 188 | a | --------- | 8B |
|  | 208 | a | 248 | a | 288 | a | 328 | a | 368 | a | ----------- | 8C |
|  | 228 | a | 268 | a | 308 | a | 348 | a | 388 | a | ---------- | 8D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9 | 9 | a | 49 | a | 89 | a | 129 | a | 169 | a | ---------- | 9 A |
|  | 29 | a | 69 | a | 109 | a | 149 | a | 189 | a | ------- | 9B |
|  | 209 | a | 249 | a | 289 | a | 329 | a | 369 | a | --- | 9 C |
|  | 229 | a | 269 | a | 309 | a | 349 | a | 389 | a | ---------- | 9 D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 10 | a | 50 | a | 90 | a | 130 | a | 170 | a | --------- | 10A |
|  | 30 | a | 70 | a | 110 | a | 150 | a | 190 | a | ---- | 10B |
|  | 210 | a | 250 | a | 290 | a | 330 | a | 370 | a | ----------- | 10C |
|  | 230 | a | 270 | a | 310 | a | 350 | a | 390 | a | - | 10D |

R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE FOR THE FREQUENCY OF 814-819 MHz AND 859-864 MHz ( 6.25 KHz CHANNEL BANDWIDTH PLAN)

R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE FOR THE FREQUENCY OF $814-819 \mathrm{MHz}$ AND $859-864 \mathrm{MHz}$ ( 6.25 KHz CHANNEL BANDWIDTH PLAN)

R.F. CHANNEL ARRANGEMENT FOR MOBILE RADIO TRUNKING SERVICE FOR THE FREQUENCY OF 814-819 MHz AND 859-864 MHz ( 6.25 KHz CHANNEL BANDWIDTH PLAN)

| S.No. | Channel Arrangement |  |  |  |  |  |  |  |  | Block No. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | 11 | b | 51 | b | 91 | b | 131 | b | 171 | b | ---- | -31A |
|  | 31 | b | 71 | b | 111 | b | 151 | b | 191 | b | ----- | -31B |
|  | 211 | b | 251 | b | 291 | b | 331 | b | 371 | b | ------ | -31C |
|  | 231 | b | 271 | b | 311 | b | 351 | b | 391 | b | ----------- | -31D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 32 | 12 | b | 52 | b | 92 | b | 132 | b | 172 | b | -------- | -32A |
|  | 32 | b | 72 | b | 112 | b | 152 | b | 192 | b | --------- | -32B |
|  | 212 | b | 252 | b | 292 | b | 332 | b | 372 | b | ----------- | -32C |
|  | 232 | b | 272 | b | 312 | b | 352 | b | 392 | b | --- | -32D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 33 | 13 | b | 53 | b | 93 | b | 133 | b | 173 | b | ------ | -33A |
|  | 33 | b | 73 | b | 113 | b | 153 | b | 193 | b | --------- | -33B |
|  | 213 | b | 253 | b | 293 | b | 333 | b | 373 | b | ---------- | -33C |
|  | 233 | b | 273 | b | 313 | b | 353 | b | 393 | b | --- | -33D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 34 | 14 | b | 54 | b | 94 | b | 134 | b | 174 | b | ----------- | -34A |
|  | 34 | b | 74 | b | 114 | b | 154 | b | 194 | b | --- | -34B |
|  | 214 | b | 254 | b | 294 | b | 334 | b | 374 | b | -------- | -34C |
|  | 234 | b | 274 | b | 314 | b | 354 | b | 394 | b | --- | -34D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 35 | 15 | b | 55 | b | 95 | b | 135 | b | 175 | b | ------ | -35A |
|  | 35 | b | 75 | b | 115 | b | 155 | b | 195 | b | -------- | -35B |
|  | 215 | b | 255 | b | 295 | b | 335 | b | 375 | b | --- | -35C |
|  | 235 | b | 275 | b | 315 | b | 355 | b | 395 | b | --- | -35D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 36 | 16 | b | 56 | b | 96 | b | 136 | b | 176 | b | --------- | -36A |
|  | 36 | b | 76 | b | 116 | b | 156 | b | 196 | b | --- | -36B |
|  | 216 | b | 256 | b | 296 | b | 336 | b | 376 | b | ----------- | -36C |
|  | 236 | b | 276 | b | 316 | b | 356 | b | 396 | b | ----------- | -36D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 37 | 17 | b | 57 | b | 97 | b | 137 | b | 177 | b | -------- | -37A |
|  | 37 | b | 77 | b | 117 | b | 157 | b | 197 | b | b----------- | -37B |
|  | 217 | b | 257 | b | 297 | b | 337 | b | 377 | b | --------- | -37C |
|  | 237 | b | 277 | b | 317 | b | 357 | b | 397 | b | --- | -37D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 38 | 18 | b | 58 | b | 98 | b | 138 | b | 178 | b | ----------- | -38A |
|  | 38 | b | 78 | b | 118 | b | 158 | b | 198 | b | --------- | -38B |
|  | 218 | b | 258 | b | 298 | b | 338 | b | 378 | b | ---------- | -38C |
|  | 238 | b | 278 | b | 318 | b | 358 | b | 398 | b | ----------- | -38D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 39 | 19 | b | 59 | b | 99 | b | 139 | b | 179 | b | ---------- | -39A |
|  | 39 | b | 79 | b | 119 | b | 159 | b | 199 | b | ---------- | -39B |
|  | 219 | b | 259 | b | 299 | b | 339 | b | 379 | b | ------------ | -39C |
|  | 239 | b | 279 | b | 319 | b | 359 | b | 399 | b | ------------ | -39D |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 40 | 20 | b | 60 | b | 100 | b | 140 | b | 180 | b | ---------- | 40A |
|  | 40 | b | 80 | b | 120 | b | 160 | b | 200 | b | -------- | -40B |
|  | 220 | b | 260 | b | 300 | b | 340 | b | 380 | b | ---------- | -40C |
|  | 240 | b | 280 | b | 320 | b | 360 | b | 400 | b | ----------- | -40D |

ARYA OMNITALK
WALKY TALKY I GPS TRACKING |TOLL 8 HTMS

## APPENDIX- E: ERLANG C TABLE

Maximum Offered Load versus $B$ and $N$

| N/B | 0.01 | 0.05 | 0.1 | 0.5 | 1 | 2 | 5 | 10 | 15 | 20 | 30 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0001 | 0.0005 | 0.0010 | 0.0050 | 0.0100 | 0.0200 | 0.0500 | 0.1000 | 0.1500 | 0.2000 | 0.3000 | 0.4000 |
| 2 | 0.0142 | 0.0319 | 0.0452 | 0.1025 | 0.1465 | 0.2103 | 0.3422 | 0.5000 | 0.6278 | 0.7403 | 0.9390 | 1.1170 |
| 3 | 0.0860 | 0.1490 | 0.1894 | 0.3339 | 0.4291 | 0.5545 | 0.7876 | 1.0400 | 1.2310 | 1.3930 | 1.6670 | 1.9030 |
| 4 | 0.2310 | 0.3533 | 0.4257 | 0.6641 | 0.8100 | 0.9939 | 1.3190 | 1.6530 | 1.8990 | 2.1020 | 2.4400 | 2.7250 |
| 5 | 0.4428 | 0.6289 | 0.7342 | 1.0650 | 1.2590 | 1.4970 | 1.9050 | 2.3130 | 2.6070 | 2.8470 | 3.2410 | 3.5690 |
| 6 | 0.7110 | 0.9616 | 1.0990 | 1.5190 | 1.7580 | 2.0470 | 2.5320 | 3.0070 | 3.3440 | 3.6170 | 4.0620 | 4.4280 |
| 7 | 1.0260 | 1.3410 | 1.5100 | 2.0140 | 2.2970 | 2.6330 | 3.1880 | 3.7250 | 4.1030 | 4.4060 | 4.8970 | 5.2980 |
| 8 | 1.3820 | 1.7580 | 1.9580 | 2.5430 | 2.8660 | 3.2460 | 3.8690 | 4.4630 | 4.8780 | 5.2100 | 5.7440 | 6.1780 |
| 9 | 1.7710 | 2.2080 | 2.4360 | 3.1000 | 3.4600 | 3.8830 | 4.5690 | 5.2180 | 5.6680 | 6.0270 | 6.6000 | 7.0650 |
| 10 | 2.1890 | 2.6850 | 2.9420 | 3.6790 | 4.0770 | 4.5400 | 5.2850 | 5.9860 | 6.4690 | 6.8530 | 7.4650 | 7.9590 |
| 11 | 2.6340 | 3.1860 | 3.4700 | 4.2790 | 4.7120 | 5.2130 | 6.0150 | 6.7650 | 7.2800 | 7.6880 | 8.3360 | 8.8570 |
| 12 | 3.1000 | 3.7080 | 4.0180 | 4.8960 | 5.3630 | 5.9010 | 6.7580 | 7.5540 | 8.0990 | 8.5300 | 9.2120 | 9.7610 |
| 13 | 3.5870 | 4.2480 | 4.5840 | 5.5290 | 6.0280 | 6.6020 | 7.5110 | 8.3520 | 8.9260 | 9.3790 | 10.09 | 10.67 |
| 14 | 4.0920 | 4.8050 | 5.1660 | 6.1750 | 6.7050 | 7.3130 | 8.2730 | 9.1580 | 9.7600 | 10.230 | 10.980 | 11.580 |
| 15 | 4.6140 | 5.3770 | 5.7620 | 6.8330 | 7.3940 | 8.0350 | 9.0440 | 9.9700 | 10.600 | 11.090 | 11.870 | 12.490 |
| 16 | 5.1500 | 5.9620 | 6.3710 | 7.5020 | 8.0930 | 8.7660 | 9.8220 | 10.790 | 11.440 | 11.960 | 12.770 | 13.410 |
| 17 | 5.6990 | 6.5600 | 6.9910 | 8.1820 | 8.8010 | 9.5050 | 10.610 | 11.610 | 12.290 | 12.830 | 13.660 | 14.330 |
| 18 | 6.2610 | 7.1690 | 7.6220 | 8.8710 | 9.5180 | 10.250 | 11.400 | 12.440 | 13.150 | 13.700 | 14.560 | 15.250 |
| 19 | 6.8350 | 7.7880 | 8.2630 | 9.5680 | 10.240 | 11.010 | 12.200 | 13.280 | 14.010 | 14.580 | 15.470 | 16.180 |
| 20 | 7.4190 | 8.4170 | 8.9140 | 10.270 | 10.970 | 11.770 | 13.000 | 14.120 | 14.870 | 15.450 | 16.370 | 17.100 |
| 21 | 8.0130 | 9.0550 | 9.5720 | 10.990 | 11.710 | 12.530 | 13.810 | 14.960 | 15.730 | 16.340 | 17.280 | 18.030 |
| 22 | 8.6160 | 9.7020 | 10.240 | 11.700 | 12.460 | 13.300 | 14.620 | 15.810 | 16.600 | 17.220 | 18.190 | 18.960 |
| 23 | 9.2280 | 10.360 | 10.910 | 12.430 | 13.210 | 14.080 | 15.430 | 16.650 | 17.470 | 18.110 | 19.100 | 19.890 |
| 24 | 9.8480 | 11.020 | 11.590 | 13.160 | 13.960 | 14.860 | 16.250 | 17.510 | 18.350 | 19.000 | 20.020 | 20.820 |
| 25 | 10.480 | 11.690 | 12.280 | 13.900 | 14.720 | 15.650 | 17.080 | 18.360 | 19.220 | 19.890 | 20.930 | 21.760 |
| 26 | 11.110 | 12.360 | 12.970 | 14.640 | 15.490 | 16.440 | 17.910 | 19.220 | 20.100 | 20.790 | 21.850 | 22.690 |
| 27 | 11.750 | 13.040 | 13.670 | 15.380 | 16.260 | 17.230 | 18.740 | 20.080 | 20.980 | 21.680 | 22.770 | 23.630 |
| 28 | 12.400 | 13.730 | 14.380 | 16.140 | 17.030 | 18.030 | 19.570 | 20.950 | 21.870 | 22.580 | 23.690 | 24.570 |
| 29 | 13.050 | 14.420 | 15.090 | 16.890 | 17.810 | 18.830 | 20.410 | 21.820 | 22.750 | 23.480 | 24.610 | 25.500 |
| 30 | 13.710 | 15.120 | 15.800 | 17.650 | 18.590 | 19.640 | 21.250 | 22.680 | 23.640 | 24.380 | 25.540 | 26.440 |
| 31 | 14.380 | 15.820 | 16.520 | 18.420 | 19.370 | 20.450 | 22.090 | 23.560 | 24.530 | 25.290 | 26.460 | 27.380 |
| 32 | 15.050 | 16.530 | 17.250 | 19.180 | 20.160 | 21.260 | 22.930 | 24.430 | 25.420 | 26.190 | 27.390 | 28.330 |
| 33 | 15.720 | 17.240 | 17.970 | 19.950 | 20.950 | 22.070 | 23.780 | 25.300 | 26.320 | 27.100 | 28.310 | 29.270 |
| 34 | 16.400 | 17.950 | 18.710 | 20.730 | 21.750 | 22.890 | 24.630 | 26.180 | 27.210 | 28.010 | 29.240 | 30.210 |
| 35 | 17.090 | 18.670 | 19.440 | 21.510 | 22.550 | 23.710 | 25.480 | 27.060 | 28.110 | 28.920 | 30.170 | 31.160 |
| 36 | 17.780 | 19.390 | 20.180 | 22.290 | 23.350 | 24.530 | 26.340 | 27.940 | 29.000 | 29.830 | 31.100 | 32.100 |
| 37 | 18.470 | 20.120 | 20.920 | 23.070 | 24.150 | 25.360 | 27.190 | 28.820 | 29.900 | 30.740 | 32.030 | 33.050 |
| 38 | 19.170 | 20.850 | 21.670 | 23.860 | 24.960 | 26.180 | 28.050 | 29.710 | 30.800 | 31.650 | 32.970 | 34.000 |
| 39 | 19.870 | 21.590 | 22.420 | 24.650 | 25.770 | 27.010 | 28.910 | 30.590 | 31.710 | 32.570 | 33.900 | 34.940 |
| 40 | 20.580 | 22.330 | 23.170 | 25.440 | 26.580 | 27.840 | 29.770 | 31.480 | 32.610 | 33.480 | 34.830 | 35.890 |
| 41 | 21.280 | 23.070 | 23.930 | 26.230 | 27.390 | 28.680 | 30.630 | 32.370 | 33.510 | 34.400 | 35.770 | 36.840 |
| 42 | 22.000 | 23.810 | 24.690 | 27.030 | 28.210 | 29.510 | 31.500 | 33.260 | 34.420 | 35.320 | 36.700 | 37.790 |
| 43 | 22.710 | 24.560 | 25.450 | 27.830 | 29.020 | 30.350 | 32.360 | 34.150 | 35.330 | 36.230 | 37.640 | 38.740 |

ARYA OMNITALK
WALKY TALKY I GPS TRACKING | TOLL \& HTMS

ERLANG C TABLE

| N/B | 0.01 | 0.05 | 0.1 | 0.5 | 1 | 2 | 5 | 10 | 15 | 20 | 30 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 44 | 23.430 | 25.310 | 26.220 | 28.630 | 29.840 | 31.190 | 33.230 | 35.040 | 36.230 | 37.150 | 38.580 | 39.690 |
| 45 | 24.150 | 26.060 | 26.980 | 29.440 | 30.670 | 32.030 | 34.100 | 35.930 | 37.140 | 38.070 | 39.510 | 40.640 |
| 46 | 24.880 | 26.820 | 27.750 | 30.240 | 31.490 | 32.870 | 34.970 | 36.830 | 38.050 | 39.000 | 40.450 | 41.590 |
| 47 | 25.600 | 27.570 | 28.520 | 31.050 | 32.320 | 33.720 | 35.840 | 37.720 | 38.960 | 39.920 | 41.390 | 42.540 |
| 48 | 26.340 | 28.330 | 29.300 | 31.860 | 33.140 | 34.560 | 36.720 | 38.620 | 39.870 | 40.840 | 42.330 | 43.500 |
| 49 | 27.070 | 29.100 | 30.080 | 32.680 | 33.970 | 35.410 | 37.590 | 39.520 | 40.790 | 41.760 | 43.270 | 44.450 |
| 50 | 27.800 | 29.860 | 30.860 | 33.490 | 34.800 | 36.260 | 38.470 | 40.420 | 41.700 | 4?,69 | 44.210 | 45.400 |
| 51 | 28.540 | 30.630 | 31.640 | 34.310 | 35.640 | 37.110 | 39.350 | 41.320 | 42.610 | 43.610 | 45.150 | 46.360 |
| 52 | 29.280 | 31.400 | 32 | 35.120 | 36 | 37.970 | 40.230 | 0 | 43.530 | 44.540 | 46.100 | 10 |
| 53 | 30.030 | 32.170 | 33.210 | 35.940 | 37.310 | 38.820 | 41.100 | 43.120 | 44.440 | 45.470 | 47.040 | 48.270 |
| 54 | 30.770 | 32.950 | 33.990 | 36.760 | 38.150 | 39.670 | 41.990 | 44.020 | 45.360 | 46.390 | 47.980 | 20 |
| 55 | 31.520 | 33.720 | 34.780 | 37.590 | 38.990 | 40.530 | 42.870 | 44.930 | 46.280 | 47.320 | 48.930 | 50.180 |
| 56 | 32.270 | 34.500 | 35.570 | 38.410 | 39.830 | 41.390 | 43.750 | 45.830 | 47.200 | 48.250 | 49.870 | 51.130 |
| 57 | 33.030 | 35.280 | 36.370 | 39.240 | 40.670 | 42.250 | 44.640 | 46.740 | 48.120 | 49.180 | 50.820 | 52.090 |
| 58 | 33.780 | 36.060 | 37.160 | 40.070 | 41.510 | 43.110 | 45.520 | 47.640 | 49.040 | 50.110 | 51.760 | 53.050 |
| 59 | 34.540 | 36.850 | 37.960 | 40.900 | 42.360 | 43.970 | 46.410 | 48.550 | 49.960 | 51.040 | 52.710 | 54.010 |
| 60 | 35.300 | 37.630 | 38.760 | 41.730 | 43.200 | 44.830 | 47.290 | 49.460 | 50.880 | 51.970 | 53.650 | 54.960 |
| 61 | 36.060 | 38.420 | 39.560 | 42.560 | 44.050 | 45.700 | 48.180 | 50.370 | 51.800 | 52.900 | 54.600 | 55.920 |
| 62 | 36.820 | 39.210 | 40.360 | 43.390 | 44.900 | 46.560 | 49.070 | 51.270 | 52.720 | 53.830 | 55.550 | . 880 |
| 63 | 37.590 | 40.000 | 41.160 | 44.230 | 45.750 | 47.430 | 49.960 | 52.180 | 53.640 | 54.770 | 56.490 | 40 |
| 64 | 38.350 | 40.800 | 41.970 | 45.060 | 46.600 | 48.300 | 50.850 | 53.100 | 54.570 | 55.700 | 57.440 | 58.800 |
| 65 | 39.120 | 41.590 | 42.780 | 45.900 | 47.450 | 49.160 | 51.740 | 54.010 | 55.490 | 56.630 | 58.390 | 59.760 |
| 66 | 39.890 | 42.390 | 43.580 | 46.740 | 48.300 | 50.030 | 52.640 | 54.920 | 56.420 | 57.570 | 59.340 | 60.720 |
| 67 | 40.660 | 43.180 | 44.390 | 47.580 | 49.160 | 50.900 | 53.530 | 55.830 | 57.340 | 58.500 | 60.290 | 61.680 |
| 68 | 41.440 | 43.980 | 45.200 | 48.420 | 50.010 | 51.770 | 54.420 | 56.750 | 58.270 | 59.440 | 61.240 | 62.640 |
| 69 | 42.210 | 44.780 | 46.020 | 49.260 | 50.870 | 52.650 | 55.320 | 57.660 | 59.200 | 60.370 | 62.190 | 63.600 |
| 70 | 42.990 | 45.580 | 46.830 | 50.100 | 51.730 | 53.520 | 56.210 | 58.570 | 60.120 | 61.310 | 63.140 | 64.560 |
| 71 | 43.770 | 46.390 | 47.640 | 50.950 | 52.590 | 54.390 | 57.110 | 59.490 | 61.050 | 62.250 | 64.090 | 65.520 |
| 72 | 44.550 | 47.190 | 48.460 | 51.790 | 53.450 | 55.270 | 58.010 | 60.410 | 61.980 | 63.180 | 65.040 | 66.480 |
| 73 | 45.330 | 48.000 | 49.280 | 52.640 | 54.310 | 56.140 | 58.900 | 61.320 | 62.910 | 64.120 | 65.990 | 67.440 |
| 74 | 46.110 | 48.810 | 50.100 | 53.490 | 55.170 | 57.020 | 59.800 | 62.240 | 63.840 | 65.060 | 66.940 | 68.400 |
| 75 | 46.900 | 49.610 | 50.920 | 54.340 | 56.030 | 57.900 | 60.700 | 63.160 | 64.760 | 66.000 | 67.890 | 69.370 |
| 76 | 47.680 | 50.420 | 51.740 | 55.190 | 56.890 | 58.780 | 61.600 | 64.070 | 65.690 | 66.940 | 68.850 | 70.330 |
| 77 | 48.470 | 51.230 | 52.560 | 56.040 | 57.760 | 59.650 | 62.500 | 64.990 | 66.630 | 67.880 | 69.800 | 71.290 |
| 78 | 49.260 | 52.050 | 53.380 | 56.890 | 58.620 | 60.530 | 63.400 | 65.910 | 67.560 | 68.820 | 70.750 | 72.250 |
| 79 | 50.050 | 52.860 | 54.210 | 57.740 | 59.490 | 61.410 | 64.300 | 66.830 | 68.490 | 69.760 | 71.700 | 73.220 |
| 80 | 50.840 | 53.680 | 55.030 | 58.600 | 60.360 | 62.300 | 65.210 | 67.750 | 69.420 | 70.700 | 72.660 | 74.180 |
| 81 | 51.630 | 54.490 | 55.860 | 59.450 | 61.220 | 63.180 | 66.110 | 68.670 | 70.350 | 71.640 | 73.610 | 75.140 |
| 82 | 52.430 | 55.310 | 56.690 | 60.300 | 62.090 | 64.060 | 67.010 | 69.590 | 71.280 | 72.580 | 74.570 | 76.110 |
| 83 | 53.220 | 56.130 | 57.520 | 61.160 | 62.960 | 64.940 | 67.920 | 70.520 | 72.220 | 73.520 | 75.520 | 77.070 |
| 84 | 54.020 | 56.950 | 58.350 | 62.020 | 63.830 | 65.830 | 68.820 | 71.440 | 73.150 | 74.460 | 76.470 | 78.040 |
| 85 | 54.810 | 57.770 | 59.180 | 62.880 | 64.700 | 66.710 | 69.730 | 72.360 | 74.080 | 75.400 | 77.430 | 79.000 |
| 86 | 55.610 | 58.590 | 60.010 | 63.730 | 65.570 | 67.600 | 70.630 | 73.280 | 75.020 | 76.350 | 78.380 | 79.970 |
| 87 | 56.410 | 59.410 | 60.840 | 64.590 | 66.450 | 68.480 | 71.540 | 74.210 | 75.950 | 77.290 | 79.340 | 80.930 |
| 88 | 57.210 | 60.230 | 61.670 | 65.450 | 67.320 | 69.370 | 72.450 | 75.130 | 76.890 | 78.230 | 80.300 | 81.900 |
| 89 | 58.020 | 61.060 | 62.510 | 66.320 | 68.190 | 70.260 | 73.350 | 76.060 | 77.820 | 79.180 | 81.250 | 82.860 |
| 90 | 58.820 | 61.880 | 63.340 | 67.180 | 69.070 | 71.150 | 74.260 | 76.980 | 78.760 | 80.120 | 82.210 | 83.830 |

## ERLANG C TABLE

|  | 0.01 | 0.05 | 0.1 | 0.5 | 1 | 2 | 5 | 10 | 15 | 20 | 30 | 40 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 91 | 59.620 | 62.710 | 64.180 | 68.040 | 69.940 | 72.040 | 75.170 | 77.910 | 79.690 | 81.060 | 83.160 | 84.790 |
| 92 | 60.430 | 63.540 | 65.020 | 68.900 | 70.820 | 72.920 | 76.080 | 78.830 | 80.630 | 82.010 | 84.120 | 85.760 |
| 93 | 61.230 | 64.360 | 65.860 | 69.770 | 71.700 | 73.810 | 76.990 | 79.760 | 81.570 | 82.950 | 85.080 | 86.730 |
| 94 | 62.040 | 65.190 | 66.700 | 70.630 | 72.570 | 74.710 | 77.900 | 80.690 | 82.500 | 83.900 | 86.030 | 87.690 |
| 95 | 62.850 | 66.020 | 67.540 | 71.500 | 73.450 | 75.600 | 78.810 | 81.610 | 83.440 | 84.840 | 86.990 | 88.660 |
| 96 | 63.660 | 66.850 | 68.380 | 72.360 | 74.330 | 76.490 | 79.720 | 82.540 | 84.380 | 85.790 | 87.950 | 89.620 |
| 97 | 64.470 | 67.690 | 69.220 | 73.230 | 75.210 | 77.380 | 80.630 | 83.470 | 85.320 | 86.740 | 88.910 | 90.590 |
| 98 | 65.280 | 68.520 | 70.060 | 74.100 | 76.090 | 78.270 | 81.540 | 84.390 | 86.260 | 87.680 | 89.870 | 91.560 |
| 99 | 66.090 | 69.350 | 70.900 | 74.970 | 76.970 | 79.170 | 82.460 | 85.320 | 87.200 | 88.630 | 90.820 | 92.530 |
| 100 | 66.910 | 70.190 | 71.750 | 75.840 | 77.850 | 80.060 | 83.370 | 86.250 | 88.130 | 89.580 | 91.780 | 93.490 |

## Annexure 3

## Violations in License Free band (446MHz) Walky Talkies

A) The following vendors from India are supplying 446 MHz License Free band walkies:

1) Aspera
2) Talkpro
3) Thinux
4) Sanchar
5) T82, Motorola
6) Bofeng
7) Access

The License Free band Walky Talky Model Aspera V7 is provisioned with an RF power switching (high and low power modes) through a side button. While importing the button is kept in low power mode to comply whereas for high power mode selection, the Walky Talky is evidenced to transmit at 5W output RF power on antenna port, in blatant violation of the gazette notification. Click on the video link
https://drive.google.com/drive/folders/18PczqS606jNOfO RVOghZCDZmzN6ByzT?usp=sharing
B) Repeaters/ Boosters/ Signal Extenders - being openly sold by Sanchar Communications, Okhla, and New Delhi for License Free band 446 MHz Walky Talky signal enhancement in clear violation of the License Free notification.


C) Following are the web at browsed images, wherein the License Free band suppliers/ vendors are quoting long coverage range Walky Talkies going from a few kms to 6kms and even 10kms


## Talk Pro LF446

₹ 7,500 / Piece Get Latest Price<br>Minimum Order Quantity: 2 Piece<br>同 Product Brochure Watch Video

| Model Name/Number | LF446 |
| :--- | :--- |
| Product Type | License Free Walkie Talkie |
| Brand | Talk Pro |
| Warranty | 1 Year |
| Range | 6 Kms |
| License Requirment | License Free |



LF446 License Free Model Walkie Talkie
₹ 7,500 / Piece Get Latest Price
Minimum Order Quantity: 1 Piece
上 Product Brochure Watch Video

| Model Name/Number | LF446 |
| :--- | :--- |
| Product Type | License Free Walkie Talkie |
| Brand | Talk Pro |
| Warranty | 1 Year |
| Range | 6 Kms |
| License Requirment | License Free |
| Walkie Talkie Size | $98 \times 60 \times 34 \mathrm{~mm}$ |
| Battery Capacity | 2500 mAH |
| Battery Backup Time | 13 hours |

IndiaMART


## Annexure 4

## Key Changes suggested in DPL Renewal License

 (Ref. Page no. 71, 72 in below)1. Point no. 3 "The Equipment covered under the possession license should not be shifted from the premises (Location)" should be deleted.
2. Point no. 5 "Particulars of equipment received/sold/transferred/delivered are to be entered in the appropriate register" should be changed to "Particulars of equipment received/sold/rented/transferred/delivered are to be entered in the appropriate register"
3. Point no. 10 "You shall not operate/sell/deliver these wireless equipments to any party who does not hold appropriate permission/license from the Wireless Planning \& Co-ordination wing of Ministry of Communications" should be changed to "You shall not operate/sell/rent/lease/deliver these wireless equipments to any party who does not hold appropriate permission/license from the Wireless Planning \& Co-ordination wing of Ministry of Communications except for a customer who is availing PMRTS services/subscription from a licensed PMRTS Operator."


Government of India
Ministry of Communications
Deptt. of Telecommunications
Wireless Monitoring Organisation
ISSUED UNDER THE INDIAN WIRELESS TELEGRAPH ACT 1933 POSSESSION LICENCE FOR THE WIRELESS RECEIVING AND/OR TRANSMITTING APPARATUS

## RENEWAL OF DEALER POSSESSION LICENSE (DPL)

Reg. No.: BBY/DPL/198

1. Name and address of Licensee
2. Location of apparatus
3. Office of Registration
4.Type \& Quantity of apparatus
5.Valid Up to

ARYA OMNITALK WIRELESS SOLUTIONS PRIVATE LIMITED,Unit 202 Summer Court Magarpatta city,Pune,MAHARASHTRA,411013

Survey No-37/1-4/3/2, PISOLI ROAD,TALUKA HAVELI,,Pune,MAHARASHTRA,411028
WRHQ-MUMBAI
As per annexure
31-12-2023

## CONDITIONS:

1. This does not empower you to operate the wireless equipments covered under the license and exclusively issued to cover the possession of the equipments only.
2. For the purpose of import / demonstration / conducting experiments, you have to obtain separate import / demonstration / experimental license from WPC Wing of Ministry of Communications.
3. The equipments covered under the possession license should not be shifted from the premises (Location).

## Date:

> Digitally signed by SANDEEP PATEL
> DN: $c=I N, o=$ REGIONAL MONITORING HQ(WR) Mumbai, ou=ENGINEER-IN-CHARGE 2 cd 2 e96e5d2c237b2f6b58981f8fddd postalCode $=400091$, st=MAHARASHTRA,
> serialNumber=faa1cff6459b46c 3862565 C 19 aO 17 fdeb4418150a5e9603cb62981aa4e20d3286, $\mathrm{cn}=$ SANDEEP PATEL
> Date: 2023.03.21 18:54:46 +0530
4. You are required to maintain the Register in:
i) Form - III in respect of complete wireless sets coming into your possession.
ii) Form - IV in respect of complete wireless sets receiver for repair.
iii) Form - V in respect of complete wireless sets given for demonstration at the premises of respective customers, in accordance with the provision of demonstration license issued under the Indian Wireless Telegraphy Act, 1933.
5. Particulars of equipments received / sold / transferred / delivered are to be entered in the appropriate register.
6. The register in Form - III and the documents in columns 7 \& 12 shall be preserved for a period of five years after the date of sale.
7. The register in Form IV \& V all is possessed for a period of one year after date of last entry in the relevant register.
8. The demonstration license and Experimental licensee whichever obtained by you may be extending validity by regular renewal under information to this office.
9. The license and the register may be inspected by the licensing authority or any officer on his behalf under the Indian Wireless Telegraphy Act. 1933.
10. You shall not operate / sell / deliver these wireless equipments to any party who does not hold appropriate permission / license from the Wireless Planning \& Co-ordination Wing Ministry of Communications .
11. Request can be consider for renewal of license for another one year before expiry of license. Submit a copy of license, Form III, IV, V and draft of Rs. 60/-for this purpose.
12. Late fee Rs. 250/- will be charged after expiry of license.

Date:


[^0]:    Arya Omnitalk Radio Trunking Services Private Limited

[^1]:    EXAMPLE 1: Migration from Analog 25 KHz (Existing) to Digital 12.5 KHz (Proposed New)

